
Method Name Prediction for Automatically
Generated Unit Tests

Maxim Petukhov
Huawei Technologies Co., Ltd

St. Petersburg, Russia

Evelina Gudauskayte
Huawei Technologies Co., Ltd

St. Petersburg, Russia

Arman Kaliyev
kaliyev.arman@yandex.kz

Huawei Technologies Co., Ltd
St. Petersburg, Russia

Mikhail Oskin
Huawei Technologies Co., Ltd

St. Petersburg, Russia

Dmitry Ivanov
dmitry.ivanov@huawei.com

korifey@gmail.com
Huawei Technologies Co., Ltd

St. Petersburg, Russia

Qianxiang Wang
wangqianxiang@huawei.com
Huawei Technologies Co., Ltd

Beijing, China

Abstract
Writing intuitively understandable method names is an
important aspect of good programming practice. The
method names have to summarize the codes’ behavior
such that software engineers would easily understand
their purpose. Modern automatic testing tools are able
to generate potentially unlimited number of unit tests
for a project under test. However, these tests suffers
from unintelligible unit test names as it is quite difficult
to understand what each test triggers and checks. This
inspired us to adapt the state-of-the-art method name
prediction approaches for automatically generated unit
tests. We have developed a graph extraction pipeline
with prediction models based on Graph Neural Networks
(GNNs). Extracted graphs contain information about the
structure of unit tests and their called functions. The
experiment results have shown that the proposed work
outperforms other models with precision = 0.48, recall =
0.42 and F1 = 0.45 results. The dataset and source codes
are released for wide public access.

Keywords: method name, unit test, abstract syntax tree,
graph, deep learning

1 Introduction
Automatic unit test generation [3, 5, 13] attracts sig-
nificant amount of attention from researchers as it is
proving its effectivity for regression suite generation
and exposing unexpected scenarios that were defective
[25]. The main goal of such tools is to generate unit test
suite which will execute as many as possible computa-
tion paths of method under test (MUT). Auto-generated
tests are often used in the areas where it is mandatory to

cover all the lines of code with tests. And whenever they
find bugs it is not problematic for programmers to read
and to fix code despite that auto-generated takes a longer
time to inspect than manually written ones [9, 26].

One of the main challenges of these tools is the in-
comprehensible unit test names. Potentially the tools can
generate a large number of unit tests for one function
where each test will trigger a particular behavior of the
MUT. Consequently, the name of each unit test has to
reflect the behavior it triggers, so that a developer could
easily grasp it without even looking at generated code.

Many of the research works on function name pre-
diction heavily use syntactic information of the code
[1, 14, 23]. Function name prediction is directly re-
flected from variable names and other syntactic informa-
tion. The main intuition behind such approach is that a
high proportion of tokens in the method name can be
found in the method’s body, parameters type and class’
name. This approach is unreliable for automatically gen-
erated unit tests as they usually contain obscure variable
names and syntactically randomly ordered code state-
ments. Moreover, a syntactic change of the automatically
generated code may reflect in the change of predicted
function name while the unit test would execute the
same computation path.

Another approach is to represent structural informa-
tion of the code as an abstract syntax tree (AST) in
Graph Neural Networks (GNNs). GNNs are connec-
tionist models that capture the dependence of graphs
via message passing between the nodes of graphs. In
encoder-decoder architecture, the GNNs are usually
used as encoding part. However, finding invariants about
data structures in GNNs is an open problem[19]. The

[29 of 57]

978-1-6654-1203-2/21/$31.00 © 2022 IEEE

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

od
e

Q
ua

lit
y

(IC
CQ

) |
 9

78
-1

-6
65

4-
12

03
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CQ

53
70

3.
20

22
.9

76
31

12

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, and Qianxiang Wang

Figure 1. Diagram of data preparation pipeline.

Unit tests
Parsing

and filtration

Graphs

Graph
extraction

Training

Built

repositories
Building

repositories

Repositories
Github

fetching

most popular and well-known solution options to this
problem[11]:

• Sum or calculate the mean of all graph nodes.
• Introduce a new “virtual node” to represent nodes

of the sub graphs in the graph, and start conven-
tional training of GNNs.

Both options are vulnerable to the vanishing gradient
problem, as code graphs often consist of thousands of
nodes. One way to deal with this weakness is to incor-
porate attention mechanism, which will point to only
important or relevant nodes in the graph.

In this research work, we have developed a neural net-
works model that predicts Java unit test name based on
structural information of the code as control-flow-graph,
abstract syntax tree, etc. To train our model, we have
downloaded the most popular GitHub projects with unit
tests. Next, the structural representations of each unit
test and MUTs are extracted as it done in [6]. Except,
we also incorporated call graph information to link each
unit test with called functions. On a fly, we erase vari-
able names inside of each unit test in order to minimize
their influence on prediction and better fit our main goal.
So that, during application on generated unit tests, the
generated variable names would not effect on prediction
result.

We extend [6] approach with the modified self atten-
tion mechanism to node types in the aggregation layer
and the simplified version of decoder. Our experiments
show that proposed modifications help neural networks
to better generalize and faster converge. For more de-
tailed review the dataset and source code is available on
link https://github.com/kk-arman/graph_names/.

Our main contribution and novelties in this paper are
the followings:

• The first attempt to apply the state-of-the-art mod-
els of method name prediction for automatically
generated Java unit tests.

• The dataset of Java unit test graphs with MUTs.
• A simplified version of decoder with modified

aggregation layer for GNN encoder.

The rest of this paper is structured as follows. Section
2 introduces a dataset. Section III presents prior works,
and Section IV proposes our approach of network set-
ting. Section V presents an experiment and obtained
results. Section VI discusses the work. Section VII gives
a conclusion.

2 Dataset
Naturally, software engineers name unit tests based on
the functionality they are testing. The body of unit test
carries only setup and assertion information while code
behavior is triggered on called function. A developer can
create a number of unit tests for one function, each time
triggering different code behavior. Each such unit test
would have different name that reflect the behavior it is
testing or capturing. Therefore, well written open-source
projects with unit test sets are well suited for training
neural network models to predict names of generated
unit tests.

Data were collected from open-source projects on the
GitHub[15] platform. We used GitHub API to filter out
Java projects based on GitHub star counts. GitHub star
counts is ranking metric based on software developers’
votes on their interested or liked projects.

We chose to fetch the projects with the highest number
of appraisals, as they most likely to follow best practices
of code naming. Figure 1 illustrates our data collection
and graph extraction pipeline.

This way, we acquired around 1000 repositories with
the highest star counts. Although, many of them con-
tained only a small number of tests or no tests at all, we
ended up with 171151 unit tests built with Maven and
Gradle.

After analysis of test methods and their names, we
developed a list of criteria to filter out test functions. In
order our model would learn only comprehensible func-
tion names with a corresponding representative body.
Criteria for filtration:

• Method name must contain no more than five
words, excluding the word “test”. Many of the
tests in the dataset had long names which were

[30 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Method Name Prediction for Automatically Generated Unit Tests

Figure 2. An example of unit test, MUT and their AST representations. During preprocessing ASTs of unit test and
MUT are connected to a single graph.

MethodCallExpr

[assertTrue(result);]

@Test

void testPositive() {

int num = 10;

bool result = isPositive(num);

assertTrue(result);

}

bool isPositive(int value) {

return value >= 0;

}

MethodDeclaration

[testPositive]

MethodDeclaration

[isPositive]

BlockStmt

BlockStmtType Parameter

VariableDeclarationExpr

[bool result = isPositive(num);]

VariableDeclarator

[result = isPositive(num)]

MethodCallExpr

[isPositive(num)]

VariableDeclarationExpr

[int num = 10;]

Type

ReturnStmt

[return value >= 0;]

Type

...

...
...

...

...

Test CalledMethod

difficult to read and understand. To avoid such
long name generation, this filter is applied.

• Method name must include at least one verb. Some
of the test names are consisted of only nouns and
pronouns. As a result, the names lacked descrip-
tion of actions that are triggered.

• The body of method must contain at least 4 lines
of code. 2 or 3 lines of code structurally have a
little difference. The real difference, they have,
would be in the specifics of the execution paths
which we intend to integrate in the future work.

Application of this filtration resulted in 43931 unit test
methods. An average number of tokens in test names is
4.33 words.

Next, AST representations of unit tests and their MUTs
are built as their graphs. Details of this stage are dis-
cussed in the preprocessing step of the Experiment sec-
tion.

2.1 Abstract syntax tree
Abstract syntax tree is a structural representation of a
program code. Each node in an AST represents a source
code unit: operators, variables, literals, function calls
etc. ASTs translate the structure of source code into

parent-child or sibling relationships allowing the effi-
cient traversing [16], where every node has at least a
type specifying what it is representing. It is widely used
by researchers and software developers for code com-
pletion [29], plagiarism detection [30], bug localization
[20] and etc.

Figure 2 presents a code of unit test with MUT and
their ASTs. At the top a simple example of unit test and
called function are illustrated, at the bottom their ASTs
representation are shown.

3 Prior Works
Early works on source code summarization are based on
key words retrieval out of source code, and then those
words are considered as annotation or summary. Most
of these summarization techniques used TF-IDF, LSI,
and LDA methods to create summary [18, 22, 27].

A more recent approach of structural representation
of the source code is to parse into AST. Once it in the
graph format, an additional edges can be added which
can represent other semantic information as data flow
or control flow graph. Such data can be feed to neural
networks which in turn can exploit its structural format-
ting. Allamanis et al. [2] proposed to apply GNNs on

[31 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, and Qianxiang Wang

Figure 3. Diagram of self-attention to node types mech-
anism inside encoder.

...

Mean

Node

embeddings

(Type 1)

...

...

...

Q Hidden

MatMul

SoftMax

HadamardMul

N
x
T

T
x
1

N
x
1

N
x
1

Repeat

N
x
T

N
x
T

N
x
T

MeanMean

Node

embeddings

(Type 1)

Node

embeddings

(Type 1)

AST graphs to learn representations of code (though
for variable names prediction and variable misuse detec-
tion). They have showed that GNNs can be effective in
extracting information in a program graph structure, and
using that information for downstream tasks. Following
this approach, researchers proposed several modifica-
tions, Cvitkovic et al. [6] introduced Graph structured
Cache (GSC) format to handle open vocabulary issue
which arose from wide range words use by programmers
for method and variable naming. GSC added an addi-
tional ‘caching’ nodes of vocabulary words to these code
graphs. Each variable that used vocabulary words had
connection to respective ‘caching’ nodes. Fernandes et
al. [7] proposed to use recurrent neural network (RNN)

to learn the sequence representation of each token in
a program, then apply GNN to compute the state for
every node in the AST. For decoder, they use another
RNN, which generates the method name as a sequence
of words. Wang et al. [28] presented GINN that derives
an abstracted representation from a hierarchy of sub-
graphs in the control flow graph for graph encoding.

U. Alon et al. [4] in 2018 presented an alternative
approach for encoding source code that leverages the
syntactic structure of programming languages. Accord-
ing to their observation, common methods have similar
syntactic paths, and the difference can often be a sin-
gle node in AST. This has encouraged them to develop
Code2Seq model, which would randomly select a set
of paths for encoding to a standard encoder-decoder
model. A random set of paths encoding provided a good
generalization of unseen examples.

We follow [6] approach by extending GNN with ag-
gregation layer based on node types and simplified de-
coder.

4 Our Approach
We adopt encoder-decoder architecture for test name
generation based on the graph representation of source
code. Encoding mechanism consist of Gated Graph Con-
volutional neural network and node type attention layer
Figure 3.

Intention behind using attention mechanism on node
types:

• Large number of nodes have empty identifiers.
• Some of the node types are rich with different

values.
• Only a few of the node types carry syntactic and

semantic information of code, many other nodes
are repetitive on each level in AST representation.

4.1 Gated Convolutional Graph
Following notation described at [2, 19], a graph 𝐺 con-
sist of a sets of nodes𝑉 ,𝑋 , and 𝐸 such that𝐺 = (𝑉 , 𝐸, 𝑋)
where

• 𝑉 - set of nodes
• 𝑋 - node features
• 𝐸 = (𝐸1, ..., 𝐸𝑘) - a set of directed edge sets, 𝑘 is

the number of edge types
Each node 𝑣 ∈ 𝑉 is labeled with a feature vector 𝑥 𝑣 ∈ 𝑅𝐷 .
For each node 𝑣 we also initialize a state vector ℎ𝑣𝑡 from
node label 𝑥 𝑣 and node type 𝑡 𝑣 ∈ 𝑇 . A “message” is sent
from each node 𝑣 to its neighboring nodes where “mes-
sage” of type 𝑘 is calculated as𝑚𝑣

𝑘
= 𝑓𝑘 (ℎ𝑣𝑡). 𝑓𝑘 is a linear

[32 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Method Name Prediction for Automatically Generated Unit Tests

Figure 4. Simple decoder

Input

Linear

Linear

Prediction

Softmax

Input

Linear

Linear

Prediction

Softmax

Hidden Hidden Hidden

Timestamp 0 Timestamp 1

...

layer function. The state in the graph are updated by ag-
gregation of all messages from each neighboring node as
�̃�𝑣 = 𝑔({𝑚𝑢

𝑘
|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑜 𝑓 𝑡𝑦𝑝𝑒 𝑘 𝑓 𝑟𝑜𝑚𝑢 𝑡𝑜 𝑣}),

where 𝑔 is an aggregation function. New state ℎ̂ for
each node 𝑣 is computed at the same time by equation
ℎ̂𝑣𝑡 = 𝐺𝑅𝑈 (�̃�𝑣, ℎ𝑣𝑡), where ℎ is node state in a previous
time step and𝐺𝑅𝑈 is the recurrent cell function of gated
recurrent unit (GRU). For a given 𝑛 number of time
steps, all the states in the graph are updated 𝑛 times by
propagation of all “messages”.

4.2 Aggregation Layer
We implemented a new aggregation layer with atten-
tion mechanism on node types. After message propa-
gation steps inside graph, node annotation vectors ℎ𝑣𝑡
are grouped based on node type 𝑡 into 𝐻 = {𝐻 𝑡 |𝑡 ∈ 𝑇 }
where 𝐻 𝑡 = {ℎ𝑣𝑡 |𝑣 ∈ 𝑉 } and 𝑇 is set of node types. For
each such group mean ℎ̄𝑡 = 𝑚𝑒𝑎𝑛(𝐻 𝑡) are calculated,
on which an attention mechanism is placed. After appli-
cation of attention mechanism, vectors send to encoder
layer to squeeze the output vector size.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑒𝑛𝑐 (
∑︁
𝑡 ∈𝑇

𝑎𝑡𝑡𝑒𝑛(ℎ̄𝑡))

4.3 Decoder
We implemented simple decoder which consist of hid-
den layer and output layer. Sampling strategy is applied
to our decoder. The output of hidden layer is used for
prediction of the current token and as the feedback to
neural network for prediction of the next token Figure 4.

In our training and testing procedures, test names are
presented as sequences of tokens.

While data collection and preprocessing pipeline were
written on Java and Python languages, the neural net-
works were implemented on Python using PyTorch frame-
work [24] and PyTorch Geometric Library [8]. Training
and testing were run on Intel Xeon Gold 6140 2.3 GHz
with GeForce RTX 2080Ti graphic card.

5 Experiment
5.1 Preprocessing
At the preprocessing stage, for each unit test we gener-
ated a separate graph from the source file. This graph
captures the structure of the test body and its MUTs. To
extract the graph from the source file, we perform the
following steps:

1. We extract the AST from the source code file that
contains a unit test.

2. Semantic edges of data-flow and control-flow be-
tween variables are added to the extracted AST.

3. A subgraph related to the unit test body is cut
from the AST.

4. New edges of control-flow are added to the cut
AST, which describe the overall progress of the
code execution, described in more detail below.

5. From unit test body called methods are identified
using call graph.

6. We repeat steps 1 through 4 for each called method
from the unit test body. Next, we connect the
graph of the unit test body with the graphs of the
called methods using call graph.

Steps 1, 2 are the same as in M. Cvitkovic et al. [6]. In
step 3, we keep information only about the structure of
the unit test body. We discard other information, such as
the structure of the unit test class itself, as we find them
little informative for our task and unnecessary burden-
some for the final graph. Steps 4 and 5 are performed
using the Soot framework[17]. Soot is a framework for
static analysis of Java programs. It contains a number
of intermediate representations of Java source code, in-
cluding Jimple. We use Jimple together with Soot to
build call graph and control flow graph, which are then
added to the final graph. Call graph allows us to deter-
mine which specific methods were called from the unit
test body, and control flow graph gives us an additional
information about the structure of the source code. How-
ever, we built the AST at the source code level, while
the control flow graph and the call graph from Soot are
built at the Jimple representation level. Jimple is an in-
termediate representation of a Java program based on

[33 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, and Qianxiang Wang

Figure 5. Comparison of training progress of our approach, GNN LSTM and Code2Seq based on validation accuracy.

0 20 40 60 80 100

N umber of epochs

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

A
c

c
u

r
a

c
y

0.34,epoch 100

0.35, epoch 98

0 .3 8 , ep och 43

Our approach

GNN LSTM

Code2Seq

three-address code. Here, the control flow graph of Jim-
ple can be mapped to the lines of source code. In this
regard, we made the following assumption:
a. The Jimple statements are mapped to the lines of

source code as each Jimple statement contains infor-
mation about the line of code, it is extracted from.

b. Javaparser[12] converts each line of code into a hier-
archical representation of the AST nodes. We select
the node at the highest level of the hierarchy for the
given line during comparison of the Jimple instruc-
tions with the AST nodes.

In step 6, we bound our analysis with the methods called
from the unit test body. Methods that are inside the
MUTs are not analyzed.

To sum up, we end up with the structural representa-
tion of unit tests and their called functions. We attach
called methods representations as the actual code behav-
ior is triggered on the MUTs while unit tests themselves
contain information of concrete input and output. Here,
it is assumed that the deep neural networks will able
to find a relation between such representation of unit
tests with attached MUTs and unit test names. Due to
the complexity of our data collection approach, we were
able to pipeline around 18k such graph examples.

5.2 Experimental Setup
As the reference for the performance comparison we
took Code2Seq [4] and GNN LSTM [2]1. Both models
are state-of-the-art models for method name generation.

1https://github.com/bdqnghi/ggnn.method_name_prediction

Code2Seq predicts function name based on AST rep-
resentation of the source code. Model follows the stan-
dard encoder-decoder architecture; it decomposes AST
into a set of paths, where each path is encoded to a vec-
tor using LSTM. Then, the decoder uses averaged path
vector of AST, attention mechanism and another LSTM
to predict sequences of tokens.

Code2Seq’s setup: parameters are initialized with Glo-
rotand Bengio heuristic [10] while cross-entropy and
Nesterov momentum are used as loss and optimization
functions .

GNN LSTM uses the average of all nodes in the
graph as the initial state of the decoder, as well Luong
Attention [21] to link the hidden state of the decoder to
the “important” nodes in the graph. However, the main
disadvantage of this approach is the potential appearance
of extremely small gradients with an increase of the
number of nodes in the graph. The attention vector is
calculated over all nodes during decoding, while there
can be from several hundred to several thousand of them
in the graph.

The dataset were randomnly split into training (80%),
testing (10%) and validation (10%) parts. During train-
ing GNN LSTM and our model, we erased variable
names inside of unit tests to simulate nature of gener-
ated code. All models are trained on 14.5k data set and
evaluation are performed on 1.8k dataset.

All models except Code2Seq are trained on the graphs
described above. To train on our dataset Code2Seq re-
quires major changes in its mechanism. Therefore, it is

[34 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Method Name Prediction for Automatically Generated Unit Tests

trained on the graph that did not contain MUT instead it
had token identifiers.

We would want to point out that a number of re-
searchers apply different approaches of metrics calcula-
tion for the task of method name prediction. Our investi-
gation of public repositories related to this task revealed
that some researchers train their networks to predict the
sequence of tokens as the method name but metrics cal-
culation is done by symbol-to-symbol scheme. Similar
evaluation setups are detected on other repositories with
different approaches of neural networks training. We be-
lieve that such way of presenting information misleads
the readers about the true performance of the models, as
many others, for example, would train their models to
predict sequence of tokens and calculate metrics based
on the predicted tokens’ ids.

To ensure the fairness of the comparison of different
models we implemented an identical metrics calculation
algorithm for all models. Accuracy, F1 and other metrics
are calculated based on token-to-token matching scheme.
Figure 5 shows training progress for all models based
on validation accuracy. Table 1 presents the final results
on the test set.

5.3 Results

Table 1. Final results on test set run.

Model Prec Rec F1
GNN LSTM 0.28 0.33 0.30
Code2Seq 0.44 0.38 0.41
Our approach 0.48 0.42 0.45

Figure 5 shows the progress of training neural net-
works based on validation accuracy metrics. As it can
be seen, our approach with simple decoder outperforms
other models with better accuracy and faster conver-
gence. Simple decoder reaches 37.5 percent accuracy al-
ready on 21th epoch, far above others. Moreover, accord-
ing to the Table 1 our approach is superior to other mod-
els in precision, recall and F1 scores. A sample of pre-
dicted examples can be found on the Table 2. Quite un-
expectedly, GNN LSTM and Code2Seq showed slightly
controversial results. During training GNN LSTM sur-
passed Code2Seq in accuracy metric, converging at
35 percent accuracy on validation set at 98th epoch,
while Code2Seq stopped improving at 100th epoch with
34 percent accuracy. On the final run on the test set,
Code2Seq and GNN LSTM demonstrated 0.41 and 0.30
F1 scores respectively.

Figure 6. Ranking node types based on attention scores.

The attention scores for different types of nodes are
ranked on Figure 6. These scores were calculated on val-
idation set with our approach. According to this ranking,

[35 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, and Qianxiang Wang

Figure 7. Difference between graphs based on their
density and prediction results.

10 12 14 16 18 20 22 24 26 28

Num ber of unique node idet ifiers in graph

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

u
n

iq
u

e
 n

o
d

e
 t

y
p

e
s
 i

n
 g

ra
p

h

Density of graphs with above 70 percent
 accuracy of predict ion.

10 12 14 16 18 20 22 24 26 28

Num ber of unique node idet ifiers in graph

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

u
n

iq
u

e
 n

o
d

e
 t

y
p

e
s
 i

n
 g

ra
p

h

Density of graphs with lower 70 percent
 accuracy of predict ion.

the most important types of nodes for test name predic-
tion are MethodCallExpr, MethodDeclaration, Simple-
Name, Name etc. It seems that the neural network puts
high importance on the nodes, which:

• have links between unit test and MUTs.
• keeps some token or parameter identifiers, for

example variable names inside called function.

Figure 7 shows the difference between good and bad
predicted examples on the validation set with our ap-
proach. The criteria for good and bad prediction is a bar-
rier of 70 percent accuracy of token sequences matching.
Our model shows high accuracy prediction on graph rep-
resentations, which consist of at least of 25 unique node
types and 18 unique parameter identifiers. On the other
hand, the neural network has troubles in prediction with
graphs that are less dense with these type of parameters.
In our dataset, almost all the graphs that pass through
this “density” threshold show good results.

Table 2. Some random examples of predicted unit test
names by simple decoder on the test set.

Prediction Reference
should place service should place blank sub process
should deserialize partial
object

should deserialize json object

test server test server delete path
test invoke config configures module
classify role provides mod-
ule name

classify role uses type name

6 Discussion and Future Work
We find method name prediction based on a graph as a
hard problem. Some of the unit tests are written after
occurrence of random bugs in the code. There are also
examples of unit tests that were created to increase test
coverage. As result, these and some other tests can have
obscure or unintelligible names. While our approach
relies on factors:

• Each unit test triggers one particular code behav-
ior.

• Developers write meaningful unit test names.
• If there is unintelligible test name then our pipeline

will filter out them using criteria filtration.
Despite of this, our approach shows promising results

of name prediction for Java unit tests. It outperformed
other models in this task with attention to node types
and almost perfect prediction for densely packed ASTs.
As future work in this area, we intend to incorporate
information related to trace execution with depiction of
nodes order execution. We believe that program traces
could bolster our results on test name prediction. Unfor-
tunately, trace collection from program execution is an-
other hard problem that requires a significant amount of
engineers’ effort and their time. Our team have already

[36 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Method Name Prediction for Automatically Generated Unit Tests

developed a such plugin for trace collection but because
of the complexity of Java virtual machine debugging
and other issues, our plugin currently can automatically
traverse about 6 thousand unit tests and their called
functions. These unit tests were initially filtered by our
pipeline, then traversed by the plugin. It is dozens of au-
tomatically debugged projects. As it is still insufficient
for training and testing, we made public all collected
dataset as well as trace collection plugin itself for other
researchers and engineers.

We are planning to continue working in this area by
enhancing the plugin and incorporating execution traces
to the dataset. Although, it seems that execution path
would have higher relation to the names, traces alone
may be not sufficient. As they present information from
the code coverage point of view. While real “code behav-
ior” summarization may require additional background
information of the unit tests and project.

7 Conclusion
In this paper, we applied the state-of the art approaches
of method name prediction for Java unit test name gen-
eration. We have developed:

• A pipeline for data preparation and preprocessing
of Java unit tests and their MUTs;

• Own implementation of neural networks for the
task of Java unit name prediction;

Our proposed approach showed a competitive result
in comparison to the-state-of-art models. However, we
believe that a real world application requires a further
research in this area and additional feature engineering.
Therefore, we plan to continue to work in this direction
and invite other researchers to take interest in this task.
Our future direction of research will be enhancing trace
collection plugin for Java virtual machine and expanding
the dataset.

References
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles

Sutton. 2015. Suggesting Accurate Method and Class Names.
In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).
Association for Computing Machinery, New York, NY, USA,
38–49. https://doi.org/10.1145/2786805.2786849

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud
Khademi. 2018. Learning to Represent Programs with Graphs.
CoRR abs/1711.00740 (2018). arXiv:1711.00740 http://arxiv.
org/abs/1711.00740

[3] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Bene-
felds. 2017. An Industrial Evaluation of Unit Test Genera-
tion: Finding Real Faults in a Financial Application. In 2017

IEEE/ACM 39th International Conference on Software Engi-
neering: Software Engineering in Practice Track (ICSE-SEIP).
263–272. https://doi.org/10.1109/ICSE-SEIP.2017.27

[4] Uri Alon, Omer Levy, and Eran Yahav. 2018. code2seq:
Generating Sequences from Structured Representations of
Code. CoRR abs/1808.01400 (2018). arXiv:1808.01400
http://arxiv.org/abs/1808.01400

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems De-
sign and Implementation (San Diego, California) (OSDI’08).
USENIX Association, USA, 209–224.

[6] Milan Cvitkovic, Badal Singh, and Anima Anandkumar.
2018. Open Vocabulary Learning on Source Code with
a Graph-Structured Cache. CoRR abs/1810.08305 (2018).
arXiv:1810.08305 http://arxiv.org/abs/1810.08305

[7] Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured Neural Summariza-
tion. CoRR abs/1811.01824 (2018). arXiv:1811.01824
http://arxiv.org/abs/1811.01824

[8] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph
Representation Learning with PyTorch Geometric. CoRR
abs/1903.02428 (2019). arXiv:1903.02428 http://arxiv.org/
abs/1903.02428

[9] Gordon Fraser and Andrea Arcuri. 2015. 1600 Faults in
100 Projects: Automatically Finding Faults While Achieving
High Coverage with EvoSuite. Empirical Softw. Engg. 20,
3 (June 2015), 611–639. https://doi.org/10.1007/s10664-
013-9288-2

[10] Xavier Glorot and Yoshua Bengio. 2010. Understanding the
difficulty of training deep feedforward neural networks.. In
AISTATS (JMLR Proceedings, Vol. 9), Yee Whye Teh and
D. Mike Titterington (Eds.). JMLR.org, 249–256. http://dblp.
uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10

[11] William L. Hamilton, Rex Ying, Jure Leskovec, and Rok Sosic.
2018. Representation Learning on Networks. http://snap.
stanford.edu/proj/embeddings-www/

[12] R Hosseini and P Brusilovsky. 2013. JavaParser: A fine-grain
concept indexing tool for java problems. CEUR Workshop
Proceedings 1009, 60 – 63. http://d-scholarship.pitt.edu/
26270/

[13] Dmitry Ivanov, Nikolay Bukharev, Alexey Menshutin, Arsen
Nagdalian, Gleb Stromov, and Artem Ustinov. 2021. UtBot
at the SBST2021 Tool Competition. In Proceedings of the
ACM/IEEE 43th International Conference on Software Engi-
neering: Companion Proceedings (ICSE ’21). Association for
Computing Machinery, New York, NY, USA.

[14] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke
Zettlemoyer. 2016. Summarizing Source Code using a Neural
Attention Model. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Berlin,
Germany, 2073–2083. https://doi.org/10.18653/v1/P16-
1195

[15] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif
Singer, Daniel M. German, and Daniela Damian. 2014. The
Promises and Perils of Mining GitHub. In Proceedings of the

[37 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

Maxim Petukhov, Evelina Gudauskayte, Arman Kaliyev, Mikhail Oskin, Dmitry Ivanov, and Qianxiang Wang

11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing
Machinery, New York, NY, USA, 92–101. https://doi.org/
10.1145/2597073.2597074

[16] Richard E. Korf. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence 27, 1
(1985), 97–109. https://doi.org/10.1016/0004-3702(85)
90084-0

[17] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. 2011. The
Soot framework for Java program analysis: a retrospective.

[18] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin
McMillan. 2020. Improved Code Summarization via a Graph
Neural Network. arXiv:2004.02843 [cs.SE]

[19] Y. Li, Daniel Tarlow, Marc Brockschmidt, and R. Zemel.
2016. Gated Graph Sequence Neural Networks. CoRR
abs/1511.05493 (2016).

[20] H. Liang, L. Sun, M. Wang, and Y. Yang. 2019. Deep Learning
With Customized Abstract Syntax Tree for Bug Localization.
IEEE Access 7 (2019), 116309–116320. https://doi.org/10.
1109/ACCESS.2019.2936948

[21] Minh-Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-based Neu-
ral Machine Translation. CoRR abs/1508.04025 (2015).
arXiv:1508.04025 http://arxiv.org/abs/1508.04025

[22] Najam Nazar, Yan Hu, and He Jiang. 2016. Summarizing Soft-
ware Artifacts: A Literature Review. J. Comput. Sci. Technol.
31, 5 (2016), 883–909. https://doi.org/10.1007/s11390-
016-1671-1

[23] Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen. 2020.
Suggesting Natural Method Names to Check Name Consis-
tencies. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York,
NY, USA, 1372–1384. https://doi.org/10.1145/3377811.
3380926

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Li-
brary. CoRR abs/1912.01703 (2019). arXiv:1912.01703
http://arxiv.org/abs/1912.01703

[25] D. Serra, G. Grano, F. Palomba, F. Ferrucci, H. C. Gall, and
A. Bacchelli. 2019. On the Effectiveness of Manual and
Automatic Unit Test Generation: Ten Years Later. In 2019
IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 121–125. https://doi.org/10.1109/MSR.
2019.00028

[26] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn,
and A. Arcuri. 2015. Do Automatically Generated Unit Tests
Find Real Faults? An Empirical Study of Effectiveness and
Challenges (T). In 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). 201–211.
https://doi.org/10.1109/ASE.2015.86

[27] Xiaotao Song, Hailong Sun, Xu Wang, and Jiafei Yan. 2019.
A Survey of Automatic Generation of Source Code Comments:

Algorithms and Techniques. CoRR abs/1907.10863 (2019).
arXiv:1907.10863 http://arxiv.org/abs/1907.10863

[28] Yu Wang, Fengjuan Gao, Linzhang Wang, and Ke Wang. 2020.
Learning Semantic Program Embeddings with Graph Interval
Neural Network. arXiv:2005.09997 [cs.SE]

[29] Yanlin Wang and Hui Li. 2021. Code Completion
by Modeling Flattened Abstract Syntax Trees as Graphs.
arXiv:2103.09499 [cs.SE]

[30] Mengya Zheng, Xingyu Pan, and David Lillis. 2018. CodEX:
Source Code Plagiarism Detection Based on Abstract Syn-
tax Tree. In Proceedings for the 26th AIAI Irish Conference
on Artificial Intelligence and Cognitive Science Trinity Col-
lege Dublin, Dublin, Ireland, December 6-7th, 2018 (CEUR
Workshop Proceedings, Vol. 2259), Rob Brennan, Jöran Beel,
Ruth Byrne, Jeremy Debattista, and Ademar Crotti Junior
(Eds.). CEUR-WS.org, 362–373. http://ceur-ws.org/Vol-
2259/aics_33.pdf

[38 of 57]

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:49:48 UTC from IEEE Xplore. Restrictions apply.

