Presentation: UTBot Simplifies Auto Test Generation

Samat Gaynutdinov, Saveliy Grigoryev, Pavel Iatchenii, Elena Ilina, Dmitry Ivanov,
Vladislav Kalugin, Aleksei Pleshakov, Pavel Ponomarev, Konstantin Rybkin,
Svetlana Shmidt, Vadim Volodin, and Alexey Utkin

UnitTestBot

July 2022

1 Introduction

Many developers find KLEE too complicated for usage and integration into projects. To generate tests, one
needs to manually navigate through difficult process of building the project in LLVM IR, running KLEE and
parsing KLEE complex output. Moreover, users need to modify their code to introduce symbolic variables that
is pretty inconvenient. The article introduces UTBot — tool for simple test generation in human readable format
without user involved.

2 Pipeline

2.1 Opening a project

When the user opens a C project in VS Code with the enabled UTBot, the plugin extracts information about
the project structure. It uses this information to collect top-level entities and rebuild the project into LLVM
IR.

UTBot uses a compilation database format to store information. There are two common ways to generate the
compile_commands . json file for the project: (a) to get it from CMake by enable CMAKE_EXPORT_COMPILE_COMMANDS
option in it or (b) to use Bear utility.

The resulting compile_commands. json file contains information about the compilation commands for the
individual source files. That is not enough to rebuild the project. To build the tests as the executable units,
UTBot needs information about the project’s linking commands. Our custom link_commands.json file uses
the same format as the compile_commands. json file does, but it also includes missing information about the
linkage stage.

UTBot comes with modified CMake and Bear tools that support generation of 1ink commands. json files.

2.2 Prepare KLEE run

During the analysis phase, UTBot uses information about the declared top-level functions and types collected
while opening the project. UTBot wraps the functions for KLEE. Consider the following function as an example:
int max(int a, int b). The UTBot-generated wrapper file for KLEE analysis is the following:

int klee_entry__max (int argc, char xx argv, char xx envp) {

int a;

klee_make_symbolic(&a, sizeof(a), ”a”);
klee_prefer_cex(&a, a >= —10 & a <= 10);
int b;

klee_make_symbolic (&b, sizeof(b), "b”);
klee_prefer_cex(&b, b >= —10 & b <= 10);
int res;

klee_make_symbolic(&res, sizeof(res),
int utbot_tmp = max(a, b);
klee_assume (utbot_tmp = result );
return 0;

77reS” );



2.3 Prepare bitcode and run KLEE

To build the project into LLVM IR, UTBot filters the compile_commands.json and link commands. json files
to find the appointed library or executable and modifies the build commands from binary to a bitcode format.
UTBot runs modified KLEE on this bitcode file.

UTBot introduces several enhancements to KLEE, e.g. ”Guided KLEE”, ”Weakest precondition in symbolic
execution” to speed up KLEE and ”Lazy initialization”, ” Floating-point support” to increase code coverage.

2.4 Google Test files generation

As aresult of its work KLEE returns test case descriptions for each project function that was previously specified
as an entry point. UTBot performs a complex transformation of KLEE output into the Google Test format.
UTBot uses this testing framework for its popularity and compatibility with both C and C+4. KLEE returns
raw byte values for symbolic objects, while UTBot is able to construct the human-like code assigning these bytes
to the variables. For instance, UTBot sets structure fields one by one with the assignment operators instead of
performing a single memcpy () call.

TEST(regression , max_test_1)
{
// Construct input
int a = 0;
int b = —1;
// Ezpected output
int expected = 0;
// Trigger the function
int actual = max(a, b);
// Check results
EXPECT EQ(expected , actual);

2.5 Compile and run tests

UTBot allows to compile test files, link them with the rest of the code and run the tests to get results and
information about code coverage. When linking generated tests UTBot solves the following problems:

e If the user code contains a C static function, the generated tests binary cannot be linked, because the
static functions are available only in the source file they are declared. To handle this problem, UTBot
generates wrapper files with the non-static functions that include original files via the #include directive.
The functions in these wrapper files have the same signatures as the original static functions and call them
in their bodies.

#include ” /home/utbot/example/abs.c”

int max_main_c(int a, int b) {
return max(a, b);

}

e C++ has some keywords, which are absent in C, for example, try or class. In C these words can serve
as the function/variable names. In the test headers UTBot guards the user function wrappers with a
#define and #undef macro and renames them so that they do not clash with any C++ specific keyword.

3 Conclusion

UTBot is a tool for easy tests generation and integration. UTBot complements KLEE’s work on generating
complete and applicable test cases with a user-friendly interface. Moreover, UTBot improves some KLEE
functionally that also raises user experience.

4 References

e UTBotCpp github - https://github.com/UnitTestBot/UTBotCpp/
e UnitTestBot - https://www.utbot.org/


https://github.com/UnitTestBot/UTBotCpp/
https://www.utbot.org/

	Introduction
	Pipeline
	Opening a project
	Prepare KLEE run
	Prepare bitcode and run KLEE
	Google Test files generation
	Compile and run tests

	Conclusion
	References

