
UTBot Java at the SBST2022 Tool Competition

Dmitry Ivanov
Huawei Research

St. Petersburg, Russia

dmitry.ivanov@huawei.com

Alexey Menshutin
Huawei Research

St. Petersburg, Russia

alexey.menshutin@huawei.com

Denis Fokin
Huawei Research

St. Petersburg, Russia

denis.fokin@huawei.com

Yury Kamenev
Huawei Research

St. Petersburg, Russia

kamenev.yury@huawei.com

Sergey Pospelov
Huawei Research

St. Petersburg, Russia

pospelov.sergey@huawei.com

Egor Kulikov
Huawei Research

St. Petersburg, Russia

kulikov.egor@huawei.com

Nikita Stroganov
Huawei Research

St. Petersburg, Russia

stroganov.nikita@huawei.com

ABSTRACT

UTBotCpp and UTBot Java [3] are automatic white-box test gen-

erators for C/C++ and Java programs correspondingly. The tools

were developed by Huawei and are based on symbolic and concrete

execution. They try to cover as many branches as possible using

program bytecode. For this purpose, UTBot tools analyze paths in

the control flow graph of a given method, construct constraints for

them, and try to find satisfying input values using SMT-solver to

cover corresponding branches. In this paper, we report the results of

UTBot Java at the tenth edition of the SBST 2022 tool competition.

ACM Reference Format:

Dmitry Ivanov, Alexey Menshutin, Denis Fokin, Yury Kamenev, Sergey

Pospelov, Egor Kulikov, and Nikita Stroganov. 2022. UTBot Java at the

SBST2022 Tool Competition. In The 15th Search-Based Software Testing

Workshop (SBST’22 ), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 2 pages. https://doi.org/10.1145/3526072.3527529

1 INTRODUCTION

The main concepts behind UTBot were described in the previous

article [4]. This year, there were presented two versions of UTBot

– with and without mocks, that took third and sixth places corre-

spondingly. The most important features developed throughout

the year and the problems we found during the preparation for

SBST2022 will be described in the sections below. The full results

of the competition can be found in the main article [1].

2 UTBOT DESCRIPTION

UTBot is a symbolic execution based test generation tool. It analyzes

paths in the control flow graph of the Method Under Test (MUT),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’22 , May 9, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9318-8/22/05. . . $15.00
https://doi.org/10.1145/3526072.3527529

collects encountered path constraints and constructs appropriate

test methods, using information from a model calculated by STM-

solver. There are important improvements compared to last year’s

version, such as concrete execution, symbolic mocks and other

improvements, that helps UTBot to achieve better results.

3 IMPLEMENTATION IMPROVEMENTS

Two versions of the product were sent to the competition: with

and without mocks, UTBot-concrete and UTBot-mocks corre-

spondingly. The first one does not mock anything except several

predefined classes and runs concrete execution at the end. Mean-

while, the second one mocks everything that does not belong to the

Class Under Test (CUT), but it does not run concrete execution.

Now there will be a short description of the concepts behind these

versions.

3.1 Symbolic mocks

During the analysis, the engine mocks objects and functions de-

pending on the mock strategy and remembers information, needed

to restore required behaviour later during the test generation using

the Mockito framework. At the competition, UTBot-mocks used

the strongest mock strategy – mock all the objects and methods out-

side of the CUT, while UTBot-concrete mocked several predefined

classes. These classes either have flaky behaviour (i.e., Random),

or there is no reason to analyze them since they do not affect the

behaviour of the MUT (for example, as Logger).

3.2 Concrete execution

Concrete execution is a very important technique, that accompa-

nies symbolic execution. It runs MUT concretely in a child process.

In UTBot it is used in many places: it generates information for

assertions using values extracted from a calculated result to elim-

inate possible path divergence1 at the end of the analysis, runs

whenever symbolic engine gets stuck, minimizes the resulting set

of tests. Unfortunately, concrete execution was disabled in UTBot-

mocks during the competition due to performance problems. We

1when the result of the symbolic analysis is different from the real one

39

2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:48:48 UTC from IEEE Xplore.  Restrictions apply. 



SBST’22 , May 9, 2022, Pittsburgh, PA, USA Dmitry Ivanov, Alexey Menshutin, Denis Fokin, et al.

already fixed them and the concrete execution is enabled in the

latest version of the engine.

3.3 Default case

An important goal is to prevent situations when some method

does not have any generated test cases for it, which might happen

because of insufficient time for symbolic analysis. For this purpose,

at the beginning of the test generation, concrete execution runs each

methodwith default parameters values and produces corresponding

test methods.

3.4 Wrappers

Since classes of the standard library are quite complicated for anal-

ysis (such as Map, Set, List, String, etc.), so-called wrappers were

implemented – classes’ approximations with the same behaviour,

that contains special constructions to make analysis easier.

4 BENCHMARK RESULTS

At the competition, UTBot-concrete took third place and UTBot-

mocks took sixth [1]. However, there was a problem during col-

lecting the results – UTBot-mocks, as the name suggests, produces

code with mocks, but many classes (45 out of 65) were marked as

“uncompilable” because of their presence. This happened because

there was noMockito-inline framework in the classpath, and we did

not discover the problem till it was too late to fix it. Moreover, the

problem with dependencies affected the results of UTBot-concrete

as well, because it mocks some classes like Random regardless of

the mock strategy – there were 19 classes with mocks that got zero

coverage in 106 runs (out of 650), six of which have never been

compiled. Their average line and branch coverage are up to 28.8%
and 19.6% correspondingly, that increased overall line coverage to

46.8% and branch coverage to 39.2% with a 120𝑠 time limit in case
of providing a valid classpath.

Sincemany correct classes have zeromean coverage in the results

from the main article [1], UTBot-mocks’ results were recalculated

using files generated at the competition. These classes can be found

at [2] alongside with coverage report (per class and average). The

final results (from the article [1] for UTBot-concrete and from the

reports in github repository [2] for UTBot-mocks) are presented in

the Table 1. Note that every class with compilation error has zero

coverage and tests that might cause JVM crashes were removed.

5 PROBLEMS

During the preparation, four main problems had revealed.

5.1 Time and other limitations management

For many classes, the engine stops generations long before the

given time limit. At the beginning of the analysis, the time budget

is divided equally for each MUT. When method analysis is finished,

the left part of the time budget returns to the common pool and

the time limit for each method recalculates using this additional

time. If there are complicated methods at the beginning and easy

methods at the end, there will be huge leftovers of time when the

queue of the methods to analyze become empty.

Table 1: UTBot Java results

Line coverage Branch coverage Mutant coverage

30s 120s 30s 120s 30s 120s

Concrete 42.3% 44.1% 33.6% 37.4% 23.9% 25.8%
Mocks 43.2% 43.6% 33.2% 34.8% 14.7%a 15.6%a

aMutant coverage for UTBot-mocks was not recalculated with required dependencies,
so the results in the table might be lower than the real one

5.2 Bugs in concrete execution

There were bugs in the concrete executor that had been fixed be-

fore the competition but a problem with performance. Sometimes

concrete execution for mocks took too much time, so it has been

decided to send two separate tools – with concrete execution and

without mocks and vice versa. Currently, this problem has been

already fixed.

5.3 JVM Crashes

Because of the bugs in the concrete execution, if it fails, a result

generated by the symbolic virtual machine is used for the test

generation. Sometimes concrete execution produces tests that might

crash JVM (for example, methods for file stream processing or work

with files). Now there is no need for such fallback, moreover tests

that crash JVM are detected by the concrete executor and form a

separate test suit.

5.4 Compilation errors

Generating compilable code is a serious challenge. Some errors

have been found only at the competition: our internal classes in the

code, wrong names for an object of Null type, ambiguous calls and

others. Because of such errors, the generated tests did not produce

any coverage for a lot of classes and the total score is less than

UTBot might achieve.

6 CONCLUSION

UTBot has shown a big growth since last year’s competition, not

only because of the results but also because of the greatly increased

stability. For the second year in a row, it has the best result among

the tools using symbolic execution. There are clear ways for im-

provement, such as transformation into a concolic engine, combin-

ing concrete and mocks strategies, path selector improvements and

many others. Coupled with the result obtained at the competition

it gives confidence in the great prospects of the UTBot.

REFERENCES
[1] Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti. 2022.

SBST Tool Competition 2022. In 15th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2022, Pittsburgh, PA, USA, May 9, 2022.

[2] Huawei. 2022. UTBot Java SBST2022. https://github.com/Software-Analysis-
Team/UTBotJava-SBST-2022.

[3] Huawei. 2022. UTBot main page. https://github.com/UnitTestBot.
[4] Dmitry Ivanov, Nikolay Bukharev, Alexey Menshutin, Arsen Nagdalian, Gleb

Stromov, and Artem Ustinov. 2021. UtBot at the SBST2021 Tool Competition.
In 2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing
(SBST). 34–35. https://doi.org/10.1109/SBST52555.2021.00015

40

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on September 23,2022 at 15:48:48 UTC from IEEE Xplore.  Restrictions apply. 


