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Abstract
We address the problem of completely automatic and declar-
ative way to laying out the elements of user interface in a
way prescribed by a set of designer-specified guidelines. We
present a model of UI which incorporates all relevant no-
tions and features, and describe an approach to automatic UI
layout synthesis based on utilization of relational verifiers.
We discuss how the techniques of relational programming
fit for solving this problem and showcase the (preliminary)
results of the evaluation of the approach we suggest.
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1 Introduction
The user interface (UI) is the way through which a user inter-
acts with a device, application, or a website. There are several
approaches to provide such interaction, e.g. GUI (graphical
user interface), CLI (command line interface), VUI (voice
user interface), and so on. GUI is the most popular among
others because of a low entry threshold for a user. Despite
the low entry threshold, GUI is rather a complicated thing to
design [13] because it must be intuitive, concise, useful and
reachable (user should easily access UI controls, e.g. with
a thumb on mobile screen [1]). At the same time GUI is a
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visual representation of controls and its design requires un-
derstanding of how to acquire the aforementioned properties
through visual aids.
In GUI applications UI is a set of components that pro-

vide information and controls for the user to accomplish
specific tasks with the interactive system [15]. GUI design
has to consider not only UI but UX (user experience) which
results from the user’s internal and physical state, prior ex-
periences, attitudes, skills, abilities and personality, and from
the context of use [15].

Modern GUI applications may follow different paradigms,
e.g. MVC (Model-View-Controller) [20]. But every approach
tends to introduce a separation between business logic and
its visual representation [3]. The latest approaches are declar-
ative and the view layer of MVC may be extracted into inde-
pendent libraries [8].

Communication and iterations are the major problems in
GUI development [12]. In order to minimize iterations, the
GUI development can be done with UI design tools. Modern
UI design tools utilization provides design speed increase,
simplification of changes, and results in uniform design [22].
Some of the tools, like Figma, allow to create GUI from a
prototype [4].

Another approach is to formally describe design principles
as guidelines. Design guidelines define style, layout, compo-
nents, text, and accessibility [10]. The formalization allows
designer to achieve acceptable results just by following the
rules. The guidelines are usually provided by:

1. operating system (macOS, Windows);
2. desktop environment (KDE, GNOME);
3. platform or framework [23];
4. development team.

Customer requirements could be considered as guidelines as
well.

Existing approaches [9, 14, 21] do not allow to take into
account all these requirements automatically. As a result,
guidelines must be followed manually by designers and de-
velopers, hence designing a user interface becomes a complex
and error-prone task.
In this paper we present a framework to synthesize the

layouts for UI elements with respect to rules defined in the
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design guidelines. We give a formal model that allows to
specify guidelines and to describe the logical structure of the
UI.We also devise a completely automatic approach, based on
relational programming [11], to synthesize layouts in terms
of layout constraints. These constraints, in turn, are solved
using Z3 solver [7], providing the absolute coordinates for
all UI controls.
Throughout the paper we use OCaml [17] as functional

implementation language and OCanren [16] as relational
language implementation.

2 UI Model
In this section we present a certainmodel which incorporates
all the important features of the domain and specifies the
problem we are dealing with in a precise form.

We can identify two important aspects of the UI: structure
and layout. Structure describes the set of UI elements and
their relations; layout, on the other hand, determines their
relative placement. In our model, the structure is completely
invariant w.r.t. the layout: regardless what a layout could be
the assortment of the elements and their logical/functional
dependencies remain the same.
In our approach we consider structure as a set of named

relations between elements. For example, let us have the
following UI form (see Fig. 1).

We can describe its structure as follows:

• there are three UI elements:
1. a check box;
2. a text label;
3. a drop-down list (combobox).

• there is a dependency relation between the text label
and the combobox since the former describes the latter;
thus, the text label and the combobox constitute a
compositional entity;

• there is an order relation between the checkbox and
this compositional entity since (as we speculate) there
is an implied dependency caused by the importance of
the components from the perspective of the UI author.

In abstract terms, we can depicture this structure as fol-
lows (see Fig. 2).
For a given structure its layout can be specified using a

set of primitives describing the placement of elements, their
alignment and other similar properties. In the given example
the label and combobox are layed out horizontally next to
each other with a certain horizontal inset, the checkbox is
stacked over the compositional label-combobox pair with a
certain vertical inset, and the whole layout is left-justified.
We can depicture the layout in question as follows (see Fig. 3).

Finally, we treat UI guidelines as mappings which (con-
ditionally) relate structure to layout. Essentially, guidelines
prescribe what layout primitives should be used if certain UI
elements are connected by certain relations in the structure.

In the following subsections we uncover more details of
the notions introduced above.

2.1 UI Structure
As we observed above, the UI structure is comprised of a
set of UI elements and a number of named relations be-
tween them. The set of elements incorporates all conven-
tional UI controls used in practice: text labels and textboxes,
comboboxes, radio buttons, checkboxes, etc. The concrete
nomenclature of these elements is mostly irrelevant for our
approach as we consider them as fully abstract items.
For now we distinguish the following types of relations

between UI elements:
• Composition: a number of elements can be composed
together; their composition is considered as an extra,
virtual element, which can be related to other elements
as well.

• Description: one element can be considered as a de-
scription for another (for example, a text label or a
check box for another element).

• Subordination: one element can be considered as a “sub-
ordinate” of another (for example, a text field, enabled
by a checkbox).

• Ordering: elements can be ordered. The ordering may
be used to reflect various ad-hoc intentions like the
flow of data or operations, alphabetic ordering, etc.

• Grouping: elements can be grouped together. This rela-
tion is similar to the ordering, but has a weaker seman-
tics. For example, it might be possible to permutate
the elements within a group or intersperse them with
other elements.

• Properties: a number of one-to-one relations between
elements and other data domains like strings, numbers,
etc. These relations are used to uniformly encode vari-
ous element properties essential for layout (or concrete
layout guidelines) like text, sizes, etc.

As for nowwe consider connected structures only. In other
words, each element is related to some other. If the structure
can be divided into several unrelated parts, each of them will
be solved independently with possible overlap.

Reiterating the example in the Fig. 1, we can now provide
a more concrete description of its UI structure (see Fig. 4).
From the UI structure point of view these relations are

considered as fully abstract entities. Their semantics and
impact on the layout is determined by the layout guidelines
only.

2.2 UI Layout
We have identified the following set of layout primitives:

• vertical composition of elements (element 𝐶1 directly
on top of the element 𝐶2):

vert (𝐶1, 𝐶2)
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Figure 1. A Sample UI Form
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Figure 2. Sample UI Form Structure
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Figure 3. Sample UI Form Layout
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Figure 4. Sample UI Form Concrete Structure

• horizontal composition of elements (element 𝐶1 di-
rectly on the left of the element 𝐶2):

hor (𝐶1, 𝐶2)

• vertical alignment of elements (does not affect the hor-
izontal position of elements):

valign (𝐶1, 𝐶2)

• horizontal alignment of elements (does not affect the
vertical position of elements):

halign (𝐶1, 𝐶2)

• horizontal indentation of one element to another:

indent (𝐶1, 𝐶2)

This is a somewhat simplified model; in reality the addi-
tional arguments should be specified for these primitives
which describe the insets and alignments of the elements
being layed out. An inset specifies a desirable vertical or
horizontal space between elements; as for alignments, dif-
ferent kinds of those are distinguished: top, center, bottom,
and baseline vertical alignments, and left, right, and center
horizontal alignments. As for now we consider the insets be-
ing a predefined constants and limit the alignments to some
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default ones; we argue that this choice does not undermine
the approach we describe.
This primitives can be orthogonally used for different el-

ements: for example, elements 𝐴 and 𝐵 can be composed
vertically, 𝐵 and 𝐶 — horizontally, and 𝐴 and 𝐶 can be hori-
zontally aligned by center, which would provide the follow-
ing layout (see Fig. 5). Note, the constraints in this example
do not require 𝐵 and 𝐶 to be aligned vertically.

2.3 UI Guidelines
UI guidelines are a system that maps relations between ele-
ments to layout primitives. It can be generically described
as a system of rules in the form

𝔓[ℭ] → 𝔏

where
• 𝔓 is a relational pattern. A pattern tests if a UI structure
being layed out contains elements satisfying relations
specified in the pattern. Those elements can be bound
to the variables in the pattern.

• ℭ is a constraint. A constraint can be used to provide
additional checks not incorporated into a pattern (for
example, it can put some extra restrictions on the sizes
of elements and other their properties, such as contents
of labels, etc.)

• 𝔏 is a composition of layout primitives, which can
contain occurrences of pattern variables.

The structure being layed out according to the UI guide-
lines is matched against the patterns, and, if a match succeeds
and a constraint is satisfied, then the corresponding layout
primitive instances are added to the set of the layout primi-
tives collected so far. Unlike conventional pattern-matching
in mainstream languages, a few guideline rules can be ap-
plied simultaneously (nondeterministic matching).
One basic form of a relational pattern is a relation name

and two variable occurrences:

𝑋
𝑟𝑒𝑙−−→ 𝑌

A UI structure satisfies this pattern iff there are two (not
necessarily distinct) elements 𝑋 and 𝑌 connected by the
relation 𝑟𝑒𝑙 .

Another basic form is a property pattern in the form

𝑟𝑒𝑙 (𝑋, 𝑝)
where 𝑟𝑒𝑙 is a name for property relation, 𝑋 is a variable,

and 𝑝 is a property value. A UI structure satisfies this pattern
iff there is an element 𝑋 whose property 𝑟𝑒𝑙 has the value 𝑝 .

We also consider composite patterns in the form𝔓1, . . . ,𝔓𝑘

where𝔓𝑖 are regular patterns; we treat the semantics of the
composition as a conjunction of semantics for individual
patterns (and-pattern). In principle, or-patterns and even

not-patterns can be also defined, but for now we did not
discover the use cases for them in the existing guidelines.
As an example consider an encoding for a fragment of

JetBrains UI guidelines [24] (see Fig. 6). In the table the left
column shows the encoding of guidelines, while the right
one — their informal presentation as given by JetBrains. The
constant 𝐾 in the second section of the table is introduced
to express the informal condition “an input box is long, and
the horizontal space is limited”. Its actual value may depend
on the size of the enclosing pane, screen resolution, etc.

3 Synthesizing Layout Constraints
The first task in guideline-based layout synthesis is genera-
tion of layout primitives for a given structure which respect
the guidelines in question. Note, for given guidelines and
structure there can be potentially multiple admissible layouts.
We solve this problem by utilizing relational verifier.

A verifier is a procedure which for a given guidelines G,
UI structure S and a set of layout primitives L checks if this
layout for this structure is admissible w.r.t. these guidelines:

verify (G, S, L) =
{

true , L respects G
false , otherwise

This verifier, being converted into a relational form verify𝑜 ,
can be used as a layout synthesizer [18]:

synth (G, S) = run𝛼 [verify𝑜 (G, S, 𝛼, true)]
Here run𝛼 [𝑔] is a conventional miniKanren primitive

for searching for all values of a variable 𝛼 which make the
goal 𝑔 to succeed; it returns a (potentially infinite) stream of
these values. Thus, the problem of layout constraints syn-
thesis can be reduced to the problem of (relational) verifier
construction.

In our approach we provide a specialized version verify𝑜G
for every set of guidelines of interest. The motivation is
very simple: first, as a rule the main use case for us is the
synthesis of layouts for multiple structures with regard to a
single fixed set of guidelines. Then, as we will see in a little
while, providing a specialized version is simpler, than the
generic one, and this version runs faster.

First we describe the construction of a non-relational, func-
tional verifier. The guidelines description system matches
the elements of the structure to a set of layout primitives.
Thus, in order to verify that some layout respects the guide-
lines we have to justify each element of the layout by some
guideline rules. More concretely, we identify two important
notions:

• Coverage. We say, that layout covers a system if for
any non-virtual element there is a layout primitive ad-
dressing this element. Coverage informally witnesses
that no “real” element of the structure is left out unat-
tended by the layout. The lack of coverage means that
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Figure 5. Layout Example: elements 𝐴 and 𝐵 are composed vertically,
𝐴 and 𝐶 are composed horizontally, 𝐴 and 𝐶 are aligned horizontally by center

there are some elements in the structure for which no
placement constraints were derived according to the
guidelines. We consider such layouts ill-formed.

• Confirmation. We say that a layout primitive occur-
rence 𝑝 is confirmed by guidelines, if, first, there is an
applicable rule in the guidelines which derives 𝑝 and,
second, all other layout primitives, derived by this rule,
occur in the layout.

The coverage can be easily assessed by traversing all lay-
out primitives, collecting all non-virtual elements and check-
ing that set of all collected elements coincides with the set
of all non-virtual elements in the structure.

The confirmation procedure traverses all layout primitives
and tries to confirm each of them. This requires each rule
of the guidelines to be inverted. For example, consider the
following rule from JetBrains guidelines set:

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 , type (𝑌 , 𝑇 ) [width (𝑌 ) > 𝐾 ∧

𝑇 ≠ checkbox]
⇒ vert (𝑋 , 𝑌 ) , halign (𝑋 , 𝑌 ) ;

It determines the following (sub)cases for the confirmation
procedure confirmG :

confirmG (S , L ) =
vert (𝑋 , 𝑌 ) ∈ L →

. . .

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−→ 𝑌 ∈ S ∧

type (𝑌 , 𝑇 )∈ S ∧
width (𝑌 ) > 𝐾 ∧
𝑇 ≠ checkbox ∧
halign (𝑋 , 𝑌 ) ∈ L
. . .

halign (𝑋 , 𝑌 ) ∈ L →
. . .

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−→ 𝑌 ∈ S ∧

type (𝑌 , 𝑇 )∈ S ∧
width (𝑌 ) > 𝐾 ∧
𝑇 ≠ checkbox ∧
vert (𝑋 , 𝑌 ) ∈ L
. . .

Thus, building functional verifier is rather a simple routine
procedure.

There are multiple ways to convert this verifier into rela-
tional form. One way is to use a relational interpreter for the
functional language the verifier is implemented in [6]; an-
other one is to apply relational conversion [19] which syntac-
tically transforms functional programs into relational ones.

We tried the latter and, indeed, acquired a relational layout
synthesizer with a reasonable behavior. There were, however,
three problems:

1. Functional verifier used lists of layout primitives to
represent layouts. Thus, there were multiple answers
which, in fact, represented the same layouts due to
permutations or repetitions of the elements of lists.

2. Incomplete answers: it turned our that often even a
small number of layout primitives is enough to cover
the structure and be confirmed by the guidelines.While
according to our criteria this is not an invalid answer,
it somewhat contradicts the informal semantics of the
guidelines as it is expected that, on the contrary, as
much rules as possible have to be used.

3. Performance: even for a simple problem the synthesis
took tens of seconds to complete.

For the first problem we devised a specific representation
for the layouts (“binary hypercube”) in which any layout can
be represented uniquely. This representation in essence is
a bitscale representation of sets and relations, and it has to
be specifically defined for each structure. For example, let
us have two UI elements a and b and, for simplicity, only
two layout primitives vert and hor. Then the following
definitions introduce the representation for layouts:

type rels = struct {vert : bool ; hor : bool }
type 𝛼 roles = struct {a : 𝛼 ; b : 𝛼 }
type layout = rels roles roles

This approach eliminates the extra overhead of the search
for equivalent answers with different representations.

The problem of incomplete answers was solved using the
following simple observation: as each guideline rule can
only add some layout primitives, it is sufficient to filter out
the answers which are subsumed by other answers. Thus,
first we call the synthesizer for all answers (this is feasible
as, due to the finiteness of the search space, the synthesis
is refutationally complete), and then in a post-processing
throw away all incomplete answers.

The last decision, however, makes the performance of the
whole synthesis an issue. Fortunately, there turned out to
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𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 , type (𝑌 , checkbox )
⇒ hor (𝑌 , 𝑋 ) ; There are no such explicit rules in the guideline, but these

basic cases implicitly follow from the others.

𝑋
𝑜𝑟𝑑−−−→ 𝑌

⇒ vert (𝑋 , 𝑌 ) , halign (𝑋 , 𝑌 ) ;

𝑋
𝑠𝑢𝑏−−−→ 𝑌

⇒ vert (𝑋 , 𝑌 ) , indent (𝑋 , 𝑌 ) ;

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 , type (𝑌 , 𝑇 ) [width (𝑌 ) <= 𝐾 ∧

𝑇 ≠ checkbox]
⇒ hor (𝑋 , 𝑌 ) ;

By the second rule variable 𝑋 is a label with text “Condition” and
variable 𝑌 is a drop-down list.

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 , type (𝑌 , 𝑇 ) [width (𝑌 ) > 𝐾 ∧

𝑇 ≠ checkbox]
⇒ vert (𝑋 , 𝑌 ) , halign (𝑋 , 𝑌 ) ;

𝐶
𝑜𝑟𝑑−−−→ 𝐶′ ,

𝐶
𝑐𝑜𝑚𝑝
−−−−−→ 𝑌 ,

𝐶′ 𝑐𝑜𝑚𝑝
−−−−−→ 𝑌 ′ ,

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 ,

𝑋 ′ 𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 ′ [max (width (𝑋 ) , width (𝑋 ′ ) ) <
2 ∗ min (width (𝑋 ) , width (𝑋 ′ ) ) ]

⇒ halign (𝑌 , 𝑌 ′ ) ;

The rule applied twice. In the first case virtual control 𝐶 contains
the top textbox (𝑌 ) and virtual control 𝐶′ contains the middle
textbox (𝑌 ′). The textbox 𝑌 is described by the top label (𝑋 ) and
the textbox 𝑌 ′ is described by the middle label (𝑋 ′). The second
case is similar for middle and bottom elements.

𝐶
𝑜𝑟𝑑−−−→ 𝐶′′ ,

𝐶′′ 𝑜𝑟𝑑−−−→ 𝐶′ ,

𝐶
𝑐𝑜𝑚𝑝
−−−−−→ 𝑌 ,

𝐶′ 𝑐𝑜𝑚𝑝
−−−−−→ 𝑌 ′ ,

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 ,

𝑋 ′ 𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 ′ [max (width (𝑋 ) , width (𝑋 ′ ) ) <
2 ∗ min (width (𝑋 ) , width (𝑋 ′ ) ) ]

⇒ halign (𝑌 , 𝑌 ′ ) ;
By the rule virtual control 𝐶 contains the top textbox (𝑌 ) and
virtual control 𝐶′ contains the bottom textbox (𝑌 ′). There is a
virtual control 𝑌 ′′ containing the checkbox between them. Labels
𝑋 and 𝑋 ′ describe textboxes 𝑌 and 𝑌 ′.

Figure 6. An Example of UI Guidelines Specification
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be an easy and elegant solution. Note, the relational nature
of structure description calls for its relational representa-
tion. Initially, in functional verifier, we used a list of relation
specifications as a representation for structure. However, an
arbitrary structure can explicitly be encoded as a specifica-
tion in a relational programming language. For example, if
we have the following structure

type (𝑋, checkbox)
type (𝑌, label)

type (𝑍, textedit)
type (𝑊, virtual)

𝑌
𝑑𝑒𝑠𝑐𝑟−−−−→ 𝑋

𝑊
𝑐𝑜𝑚𝑝
−−−−→ 𝑋

𝑊
𝑐𝑜𝑚𝑝
−−−−→ 𝑌

𝑊
𝑜𝑟𝑑−−→ 𝑍

then we can directly convert it into the following set of
relational definitions:

let type𝑜 x y = ocanren {
y == Checkbox & x == X |
y == Label & x == Y |
y == TextEdit & x == Z |
y == Virtual & x == W

}

let descr𝑜 x y = ocanren {
x == Y & y == X

}

let comp𝑜 x y = ocanren {
x == W & {y == X | y == Y }

}

let ord𝑜 x y = ocanren {
x == W & y == Z

}

After the conversion, a pattern to match over a structure
can be turned into a conventional relational goal; for example,
the pattern

𝑋
𝑑𝑒𝑠𝑐𝑟−−−−−→ 𝑌 , type (𝑌 , 𝑇 ) [width (𝑌 ) > 𝐾 ∧

𝑇 ≠ checkbox]

which we’ve already considered as example multiple times
can be expressed by the following goal:

descr𝑜 x y &
fresh t , w in

type𝑜 y t &
width𝑜 y w &

t < k &
t . Checkbox

Not only this implementation is much faster than that
obtained from a functional one via relational conversion, but
is it much more native for the given problem.
To summarize, we implement the layout synthesizer in

the following way:
• the synthesizer is specialized for a given set of guide-
lines and a given structure;

• the structure is converted into a set of relational defi-
nitions;

• a corresponding “binary hypercube” definition for lay-
out representation is generated for the structure;

• the set of guideline rules is “inverted”, and all matching
on the structure is turned into appropriate goals using
the definitions generated for this structure.

This, coupled with the usual coverage check, delivers us
the layout synthesizer. The drawback of this approach is
that we need to re-generate the part of the system with each
change of the structure; on the other hand the gains in the
performance are essential. This is rather a natural trade-off
when specialization techniques are used.

4 Solving Layout Constraints
Layout synthesizer for a given structure produces a set of
layout primitives. This set in fact specifies a number of integer
linear constraints which have to be solved in order to obtain
the final, absolute coordinates of the elements. Indeed, let us
introduce the notations for integer constants and variables
which values have to be defined as a result of constraint
solving:

• 𝐶 .width — the width of UI element 𝐶 (integer con-
stant for real UI elements and a variable for virtual UI
elements);

• 𝐶 .height — the height of UI element 𝐶 (integer con-
stant for real UI elements and a variable for virtual UI
elements);

• 𝐶 .x — the 𝑋 -coordinate of UI element 𝐶 (a variable
for each UI element);

• 𝐶 .y — the 𝑌 -coordinate of UI element𝐶 (a variable for
each UI element);

• 𝑎𝐻 , 𝑎𝑉 — the horizontal/vertical alignments between
two UI elements (integer constant);

• 𝑖𝐻 , 𝑖𝑉 — the vertical/horizontal insets between two UI
elements (integer constants);

• 𝑖𝑛𝑑 — indent between two UI elements (integer con-
stant);

• 𝑊 — the width of enclosing panel (integer constant);
• 𝐻 — the height of enclosing panel (integer constant).

The set of layout primitives defines a set of integer con-
straints as follows.

• A layout constraint hor (𝐶1, 𝐶2) introduces constraints
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𝐶2 .x −𝐶1 .x ⩽ 𝑖𝐻 +𝐶1.𝑤𝑖𝑑𝑡ℎ

𝐶2 .y −𝐶1 .y = 𝑎𝑉

• A layout constraint vert (𝐶1, 𝐶2) introduces constraints

𝐶2 .x −𝐶1 .x = 𝑎𝐻

𝐶2 .y −𝐶1 .y ⩽ 𝑖𝑉 +𝐶1 .height

• A layout constraint halign (𝐶1, 𝐶2) introduces con-
straint

𝐶1 .x −𝐶2 .x = 𝑎𝐻

• A layout constraint valign (𝐶1, 𝐶2) introduces con-
straint

𝐶1 .y −𝐶2 .y = 𝑎𝑉

• A layout constraint indent (𝐶1, 𝐶2) introduces con-
straints

𝐶1 .x −𝐶2 .x = 𝑖𝑛𝑑

𝐶1 .y −𝐶2 .y ⩽ 𝑖𝑉 +𝐶1 .height

Also, for each virtual UI element𝐶 containing UI elements
𝐶1, . . . ,𝐶𝑛 the following constraints are needed that define
its actual coordinates, width and height:

𝐶 .x = min {𝐶1 .x, . . . ,𝐶𝑛 .x}
𝐶 .y = min {𝐶1 .y, . . . ,𝐶𝑛 .y}

𝐶 .x +𝐶 .width = max {𝐶𝑖 .x +𝐶𝑖 .width}𝑛𝑖=1
𝐶 .y +𝐶 .height = max {𝐶𝑖 .y +𝐶𝑖 .height}𝑛𝑖=1

Additionally, a number of inequality constraints is added
which restrict the maximal possible values for coordinates
taking into account the size of enclosing panel. For each UI
element 𝐶 we introduce the following constraints:

𝐶 .x ⩾ 0
𝐶 .y ⩾ 0

𝐶 .x +𝐶 .width ⩽𝑊
𝐶 .y +𝐶 .height ⩽ 𝐻

There exists a number of ways to solve the set of inte-
ger linear inequalities (for example, using SMT solvers over
the linear integer arithmetic theory). It is, however, very
appealing to try to employ relational verifiers yet again. This
relational solver would have the following benefit: it could
be seamlessly integrated into the layout synthesis procedure,
thus allowing some constraint selection to be rejected at
earlier stages.
However, the current relational implementation of this

solver is underperforming in the presence of virtual UI ele-
ments. As mentioned above, the width and height of virtual

UI elements are not constants, which greatly increases the
search space.

So, for the time being, we, indeed, used Z3 TheoremProver [7]
to determine the absolute coordinates of the UI elements (as
well as the width and height of all virtual UI elements).

5 Implementation and Evaluation
In this section we describe the technical details of our proto-
type implementation and discuss several examples of layout
synthesis for specific UI structures.
The prototype of our tool is developed as a client/server

application using WEB technologies. On client side we use
HTML5 for rendering and (mostly) OCaml [17] (compiled to
JavaScript via Js_of_ocaml [25]) for a client-server inter-
action. Server side is a native OCaml application equipped
by OCanren [16] and Z3. An initial attempt was to build a
serverless prototype but, first, we observed that Js_of_ocaml
runs as twice as slower than the native OCaml for simple
cases, and, second, running a C++ application Z3 in a WEB-
browser is non-trivial.

5.1 Client Side
A web page is essentially a text area for the user input of
structure information in the syntax similar to that in Fig. 7,
and a space for rendering results. The client-server inter-
action runs in several phases. The client sends structure
information to the server and receives possibly many lay-
outs. After that it sends the layouts to the server one by one
and receives the exact coordinates of the UI elements in the
structure. The layouts which were successfully evaluated
with Z3 are being rendered in the end.

5.2 Server Side
The server side is implemented in OCaml with assistance
of OCanren1 [7], noCanren2 [19] and Z3 [7]. It could be
separated into two parts: synthesis of a layout and evaluation
of absolute coordinates.
The synthesis of a layout is implemented mostly in func-

tional style with assistance of noCanren, which translates a
dialect of ML to OCanren. The exception is a confirmation
check (described in Section 3) which is easier to implement
in relational style because it applies non-deterministically
many guideline rules. Encoding of the guideline rules them-
selves in OCanren is error-prone because of inversion re-
quirement. We implemented an embedded DSL for OCaml
for these guidelines which performs an inversion at compile
time.

We could name two drawbacks in our current implemen-
tation. For now we have a limited amount of identifiers for
UI elements (named by letters from A to J on Figure 7) which

1https://github.com/JetBrains-Research/OCanren
2https://github.com/Lozov-Petr/noCanren

https://github.com/JetBrains-Research/OCanren
https://github.com/Lozov-Petr/noCanren
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allows to represent our binary hypercube finitely, but re-
duces the expressivity of input structure definition. In future
it shall be easily fixed because all possible structure defini-
tions have a finite number of elements. Another drawback
of our binary hypercube is an ability to encode nonsensical
layouts (for example, one element subordinates another and
vice versa). Right now these layouts are filtered out during
the generation of absolute coordinates, but ideally we want
them to be non-representable using type definitions of our
synthesizer.
The second part of server implementation is the calcula-

tion of absolute coordinates with assistance from Z3. This
stage filters out problematical layouts and performs much
faster than our relational synthesis. But we linked OCaml
and Z3 to a single executable anyway to avoid paying any
costs for inter process communication.

5.3 Evaluation
As an evaluation of the implemented tool we performed a
synthesis for several UI structures using the UI guideline
described in the subsection 2.3. The evaluation results are
presented in Fig. 7.
The test UI structures use relations between real UI ele-

ments and virtual ones described in Section 2.1. As one can
see, a proper layout was synthesized for each test. Note, the
synthesis time for each was no more than 5 seconds.

6 Related Works
In the field of relational programming one of the appealing
applications is solving program synthesis problems. First
of all, for the synthesis of programs with certain properties
relational interpreters of programming languages are used.
This approach allows one to fully or partially synthesize
quines [6], or programs that pass a set of tests [5]. More gen-
erally, relational interpreters make it possible to synthesize
solutions for search problems [18]. Also, relational theorem
provers allow one to synthesize both proofs by theorems
and theorems by proofs [2].
In the layout construction area there are some tools for

declarative description of the layout [9, 14, 21] using domain-
specific languages (DSL). These approaches, however, require
explicit or implicit specification of the exact locations for the
UI components. Therefore, these languages are not suitable
for an abstract description of the interface. We are not aware
of any approaches for synthesizing the layout according to
the description completely abstracted from the information
about the coordinates of the components.

7 Discussion and Future Work
Wepresented the preliminary results of ourwork on guideline-
based synthesis of UI layouts. While this work is not yet
finished, we consider our current results promising.

One interesting question which may arise is if the applica-
tion of relational programming is essential for this problem
to be solved. Indeed, the set of guidelines describes a match-
ing (or rewriting) system which, in principle, can be directly
implemented without any use of relational techniques. We
argue, however, that in this case a whole piece of work on jus-
tification of the correctness and completeness of the solution
would have been repeated anew. In our case, the justification
trivially follows from the completeness of the miniKanren
search and refutational completeness of our solution.We also
speculate that such a solution would require reinventing of
some implementation techniques to support nondetermin-
ism and backtracking, which are already native to relational
programming. Finally, the duality between patterns over
structure and relational goals (initially unexpected for us),
to our opinion, witnesses, that relational programming is
a truly native technique for this problem, and we are not
stretching an owl over a globe.
To describe the structure of the interface, we have de-

veloped our own DSL, since existing DSLs do not allow to
completely abstract from the coordinates of elements. Our
prototype for now supports rather a limited subset of struc-
ture/guideline description constructs. The most relevant task
for the future is extending this subset to make it possible to
express the real-world guidelines and synthesize layouts for
real-word industrial UI components.

We can also consider the task of getting rid of extra solver
(Z3) as relevant; this would not only simplify the infrastruc-
ture of the system, but would also allow to integrate the
constraint resolution phase into the constraint synthesis, im-
proving the performance of the whole system. To do this, we
plan to develop a relational integer inequality solver with a
binary representation of fixed-size numbers. Note that for
satisfactory performance it will also be necessary to extend
OCanren with inequality operations for such numbers in
the form of a new type of constraint.
Finally, the current DSL for structure description is dif-

ficult for the untrained user to use. Therefore, we consider
the task of developing a more user-friendly DSL that will
translate into the current one.
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