
On Satisfiability of Nominal Subtyping with
Variance
Aleksandr Misonizhnik
JetBrains Research, Saint Petersburg State University, Russia
misonijnik@gmail.com

Dmitry Mordvinov
JetBrains Research, Saint Petersburg State University, Russia
dmitry.mordvinov@jetbrains.com

Abstract
Nominal type systems with variance, the core of the subtyping relation in object-oriented pro-
gramming languages like Java, C# and Scala, have been extensively studied by Kennedy and
Pierce: they have shown the undecidability of the subtyping between ground types and proposed
the decidable fragments of such type systems. However, modular verification of object-oriented
code may require reasoning about the relations of open types. In this paper, we formalize and
investigate the satisfiability problem for nominal subtyping with variance. We define the problem in
the context of first-order logic. We show that although the non-expansive ground nominal subtyping
with variance is decidable, its satisfiability problem is undecidable. Our proof uses a remarkably
small fragment of the type system. In fact, we demonstrate that even for the non-expansive class
tables with only nullary and unary covariant and invariant type constructors, the satisfiability of
quantifier-free conjunctions of positive subtyping atoms is undecidable. We discuss this result in
detail, as well as show one decidable fragment and a scheme for obtaining other decidable fragments.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification; Software and its engineering → Object oriented languages; Software and its
engineering → Automated static analysis; Software and its engineering → Polymorphism; Software
and its engineering → Inheritance

Keywords and phrases nominal type systems, structural subtyping, first-order logic, decidability,
software verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.7

Acknowledgements We thank Sophia Drossopoulou, Dmitry Boulytchev and anonymous reviewers
for their insight and comments that significantly improved the manuscript.

1 Introduction

Although object-oriented languages like Java, C# or Scala are ubiquitous in modern pro-
gramming, the investigation of their type systems is still in progress. For example, Java type
checking has only recently been shown to be undecidable [7]. One important feature of such
languages is that types can appear at runtime and influence program execution (in contrast
to the ML programming language family, Haskell, etc., in which type information is erased
during compilation). For example, consider the following snippet:

1 IDictionary<TKey, TValue> MakeCache<TKey, TValue>()
2 {
3 if (typeof(TKey) == typeof(int))
4 return new SortedDictionary<TKey, TValue>();
5 if (typeof(TKey) == typeof(string))
6 return new Dictionary<TKey, TValue>();
7 throw new InvalidOperationException();
8 }

© Aleksandr Misonizhnik and Dmitry Mordvinov;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:misonijnik@gmail.com
mailto:dmitry.mordvinov@jetbrains.com
https://doi.org/10.4230/LIPIcs.ECOOP.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On Satisfiability of Nominal Subtyping with Variance

The runtime behaviour of MakeCache depends on the value of the formal type parameter
TKey: the method returns a fresh instance of SortedDictionary indexed by integer keys,
Dictionary for string keys, or throws an exception otherwise. But what if we would like
to statically check that MakeCache is used correctly, i.e. it does not throw an exception?
Unfortunately, the type parameter constraint system of .NET does not allow to specify this
restriction, as it does not implement disjunctive constraints.

Our study is motivated by the problem of verification of .NET programs. Modern deductive
software verifiers are capable of checking non-trivial properties of programs by proving that
under certain preconditions, executing a function guarantees certain postconditions. For
instance, for the example above, the correctness property could be specified as a logical
precondition for the method. In Spec#-style [1], this could be expressed as

1 IDictionary<TKey, TValue> MakeCache<TKey, TValue>()
2 requires typeof(TKey) == typeof(int) || typeof(TKey) == typeof(string)
3 {
4 ...
5 }

In more complex cases, arbitrary boolean combinations (including negation) of subtyping
constraints or even quantified specification can be useful. Unfortunately, neither compilers
nor modern verifiers (including Spec#) are capable of statically checking such properties
because their assertion language cannot express properties of types.

Consider another snippet:

1 interface ICloneable<out T> { T Clone(); }
2 class Base { }
3 sealed class Derived : Base, ICloneable<Derived>
4 {
5 public Derived Clone() { return new Derived(); }
6 }
7 void F<T>(Base arg1, Derived arg2)
8 {
9 if (arg2 is ICloneable<T> && arg1 is T)

10 {
11 var clone = ((Derived) arg1).Clone();
12 ...
13 }
14 }

Using our fictitious extension of Spec# specification language, the specification of the function
F would include the following clause:

requires Derived <: ICloneable<T> ∧ typeof(arg1) <: Base∧
typeof(arg1) <: T ∧ typeof(arg1) <: Derived

One might think that the last conjunct, ie typeof(arg1) <: Derived, can be omitted, and that
the type cast expression (line 11) never fails: as Derived is sealed, the actual type of arg2
can only be Derived. In contrast, the type of arg1 can be Base or a subtype of Base type;
as Derived implements only ICloneable<Derived>, T may only be Derived, therefore, if
line 11 is reachable, then arg1 is Derived. However, this reasoning is wrong: as ICloneable
is a covariant constructor and Base is a supertype of Derived, ICloneable<Base> is a
supertype of Derived, and line 11 can be reached with T = Base. Is it possible to determine
the satisfiability of such violations automatically?

A. Misonizhnik and D. Mordvinov 7:3

It would be legitimate to omit the last conjunct, ie typeof(arg1) <: Derived, and also
omit the cast on line 11, if we knew that

∀T, T’.Derived <: ICloneable<T> ∧ T’ <: Base ∧ T’ <: T⇒ T’ <: Derived

Or, equivalently, if we could prove the unsatisfiability of the following assertion:

φ
def= ∃T, T’.Derived <: ICloneable<T> ∧ T’ <: Base ∧ T’ <: T ∧ T’ ≮: Derived

In the particular case, φ is satisfiable. Namely, take T = Base = T′, and the optimizations
proposed above would be unsound.

Our examples have demonstrated the relevance of subtype satisfiability in program
specification as well as for code optimization. The next question is the design of decision
procedures for such questions. However, it turns out that this question in undecidable!

In section 2, we formalize nominal subtyping with variance following definitions and
propositions from [8]. We focus our attention on non-expansive inheritance fragment [19],
which was shown to be decidable [8] and has been adopted in the .NET Framework [4].

In section 3, we formalize and investigate the first-order satisfiability problem for nominal
subtyping with variance; to the best of our knowledge, this is the first attempt at its detailed
examination. Unlike the subtyping problem, which answers the question “Is one type a
subtype of another type?”, the satisfiability problem answers the question “Are there types
that meet the required constraints?”. In fact, satisfiability involves the subtyping problem, in
the case where the constraints do not contain type variables. This means that the decidability
of the subtyping problem does not imply the decidability of the satisfiability problem. We
present a number of quantifier-free first-order formulas, demonstrating that the satisfiability
problem is tricky even for non-expansive inheritance.

In section 4, we reinforce this by proving the undecidability of this problem, which is
the primary contribution of the paper. Our proof uses a remarkably small fragment of the
type system; in fact, we show that the subtyping satisfiability problem is undecidable for
non-expansive class tables (1) without contravariant constructors, (2) with only nullary and
unary constructors, (3) for quantifier-free conjunctions of subtyping atoms without negation.

Afterwards, in section 5, we demonstrate one practical decidable fragment which we call
semiground, and prove its decidability. Using the intuitions from the proof, we provide a
scheme to obtain other decidable fragments.

Our results may give rise to the construction of an effective decision procedure for the
quantifier-free case. We formulate the problem in terms of satisfiability modulo theory, aiming
at the implementation of its decision procedure in SMT-solvers [2, 3]. The support of SMT-
reasoning for nominal type theory is useful for software verification tools, static analysers
and generation techniques of automated tests, and exploits and patches for object-oriented
languages. The first-order theory of nominal types may be used for type specifications in
the assertion languages of deductive verifiers, while its decision procedure may be used for
solving path conditions of different program branches. It may also be useful in compilers: for
example, in improving dead code elimination techniques by proving the unsatisfiability of
the path condition for a certain code fragment.

ECOOP 2019

7:4 On Satisfiability of Nominal Subtyping with Variance

2 The type system1

In this section, we formalize nominal subtyping with variance. Types can either be type
variables, denoted by lowercase letters, or constructed types C<T>, where C is an n-ary
type constructor and T is a vector of arguments of length n. We omit angle brackets if
a type constructor is unary: for example, we write ABCx instead of A<B<C<x>>>. CrT

denotes the type C . . . CT , where C occurs r times. We refer to such types as chains of r
type constructors C ending with T . Ground types are types that contain no variables. Open
types are types that are not ground.

The subtyping relation of nominal type systems with variance is defined via an explicit
specification of the names of supertypes and variances of type parameters. Such specifications
are usually expressed as class tables.

I Definition 2.1. A class table is a finite set of entries of the form

C<vx> <:: T1, . . . , Tn

Each entry contains a unique declaration of a type constructor and a finite list of constructed
types, which are nominal supertypes for all types constructed by this type constructor. The
left-hand side of an entry contains the name for constructor C and its formal type parameters
xi with variances vi. vi may be either ◦ (invariant) or + (covariant) or − (contravariant).
The right-hand side contains a finite list of types Ti obtained from constructors declared in
other entries, constructor C, and parameters xi. To simplify the notation, we omit ◦ in class
table declarations.

System.Object <::
System.ValueType <:: System.Object

IEnumerable <:: System.Object

IEnumerable< + x> <:: IEnumerable

ICollection <:: IEnumerable

ICollection<x> <:: IEnumerable<x>

Pair<x, y> <:: System.ValueType

IDictionary <:: ICollection

IDictionary<x, y> <:: ICollection<Pair<x, y>>

Dictionary<x, y> <:: IDictionary<x, y>

IDictionary

interface IEnumerable {}
interface IEnumerable<out x>:

IEnumerable{}
interface ICollection:

IEnumerable {}
interface ICollection<x>:

IEnumerable<x> {}
struct Pair<x, y> {}
interface IDictionary:

ICollection {}
interface IDictionary<x, y>:

ICollection<Pair<x, y>> {}
class Dictionary<x, y>:

IDictionary<x, y>,
IDictionary {}

Listing 1 The declaration of the class Dictionary and its class table.

I Example 2.2. Listing 1 demonstrates a simplified fragment of the class table for the
Dictionary<x, y> standard container in .NET.

1 In this section, we follow definitions and propositions from [8].

A. Misonizhnik and D. Mordvinov 7:5

The i-th formal type parameter of a type constructor C and its variance are denoted
by C#i and var(C#i) correspondingly: C#i def= xi and var(C#i) def= vi. For example,
IEnumerable#1 = x and var(IEnumerable#1) = +.

I Definition 2.3. A substitution is a total mapping from type variables to types, which is
an identity everywhere except for a finite set of variables which are mapped into constructed
types. The domain of a substitution subst is a set of variables mapped to types, and the range
is the image of the domain. We write substitutions as

[x1 7→ T1; . . . , xn 7→ Tn] and [x 7→ T],

where x1, . . . , xn are type variables from the domain of substitution and T1, . . . , Tn are their
images. We write the application of substitution [x 7→ T] to type T as [x 7→ U]T . If the
domain of a substitution consists of one type variable x, we omit the brackets:

x 7→ T

We use <:: not only as a class table separator, but also to denote the binary relation of
nominal subtyping. If a class table has an entry C<x> <:: Ti, then C<U> <:: [x 7→ U]Ti.
We write the transitive closure of <:: as <::+.

We require class tables to define only acyclic <::+ relations and to be well-formed with
respect to the variance of formal type parameters, i.e. variant type parameters should appear
only in positions of the same polarity. Furthermore, we require that the supertypes do
not overlap: if C<x> <:: T and C<x> <:: U , then for all V if [x 7→ V]T = [x 7→ V]U ,
then T = U .

Finally, we can define the subtyping relation.

I Definition 2.4. The ground subtyping relation <: is defined by the set of the following rules:

T <: U
T <:+ U T <:◦ T

U <: T
T <:− U

(Var)
for each i Ti <:var(C#i) Ui

C<T> <: C<U>

(Super)
C<x> <:: V [x 7→ T]V <: D<U>

C<T> <: D<U>
C 6= D

Due to the multiple instantiation inheritance, the Super rule can be applied non-
deterministically.

I Example 2.5. The following sequence of rules should be applied to deduce that
Dictionary<T, U> is a subtype of IEnumerable<System.Object>:

Dictionary<T, U> <: IEnumerable<System.Object>
−→ IDictionary<T, U> <: IEnumerable<System.Object> by Super
−→ ICollection<Pair<T, U>> <: IEnumerable<System.Object> by Super
−→ IEnumerable<Pair<T, U>> <: IEnumerable<System.Object> by Super
−→ Pair<T, U> <: System.Object byVar
−→ System.ValueType <: System.Object by Super
−→ System.Object <: System.Object by Super
−→ byVar

ECOOP 2019

7:6 On Satisfiability of Nominal Subtyping with Variance

Dictionary#1 IDictionary#1 Pair#1

ICollection#1 IEnumerable#1

Dictionary#2 IDictionary#2 Pair#2

Figure 1 Type parameter dependency graph for Listing 1.

Ground subtyping is a partial order on a set of ground types. The ground subtyping
relation has been shown to be undecidable in [8]. In the following, we introduce a notion of
non-expansive inheritance.

I Definition 2.6. A type parameter dependency graph is a directed graph with vertices
that correspond to formal type parameters and two kinds of edges: for each class table entry
C<x> <:: T and for each subterm D<U> of T ,

if Uj = xi, then there is a non-expansive edge from C#i to D#j (depicted via a dotted
arrow);
if xi is a proper subterm of Uj, then there is an expansive edge from C#i to D#j
(depicted via a solid arrow).

For instance, in Example 2.2, IDictionary<x,y> <:: ICollection<Pair<x,y>> in-
troduces a non-expansive edge from IDictonary#1 to Pair#1 and an expansive edge to
ICollection#1. The complete type parameter dependency graph is shown in Figure 1.

I Definition 2.7. A class table is expansive if its type parameter dependency graph has a
cycle with at least one expansive edge.

I Example 2.8. The class table Listing 1 is non-expansive, as its type parameter dependency
graph Figure 1 does not contain cycles.

I Proposition 2.9. The non-expansive ground subtyping relation is decidable.

I Proposition 2.10. Ground subtyping is decidable if a class table has no contravariant
constructors.

Both results have been shown in [8].

3 The SUBTYPE-SAT problem

In this section, we formalize the subtype satisfiability problem and show some interesting
examples.

In what follows, fix a class table CT . Let C be a set of constructors in CT . Let
Σ = (C , {<: }) be a first-order signature with equality. Function symbols are identified with
constructors in CT . For convenience, the applications of a function symbol C to arguments
U are still written as C<U>, or just CU in the unary case. <: is a binary predicate symbol
written in infix style. For convenience, ¬(T <: U) and ¬(T = U) are written as T ≮: U
and T 6= U .

A. Misonizhnik and D. Mordvinov 7:7

Let I<: be a Σ-structure with the domain |I<:| of all ground types defined by CT ,
interpreting <: as the subtyping relation from Definition 2.4. Let T CT

<: be a complete
first-order Σ-theory of structure I<:, i.e. the set of all first-order Σ-sentences which are
satisfied by I<: (we assume a usual definition of satisfaction of φ by I, denoted I � φ). Given
a Σ-sentence φ, we say that φ is satisfiable modulo T CT

<: , iff I � φ.
Let V be a countable set of variables. An assignment of free variables is any mapping

v : V → |I<:| of variables to ground types. Note that free variable assignments are
substitutions with a ground range. A formula with free variables φ is called satisfiable (valid,
unsatisfiable) if I, v � φ for some (any, no) free variable assignment v. We abbreviate the
satisfiability in (I, v) and validity of φ with v �CT

<: φ and �CT
<: φ correspondingly.

I Problem 3.1 (SUBTYPE-SAT problem). Given a class table CT and a formula φ over Σ,
find such a free variable assignment v that v �CT

<: φ or prove its absence.

We aim to show that although the ground subtyping relation is decidable for both non-
expansive class tables and class tables without contravariant constructors, the SUBTYPE-SAT
problem is undecidable even with both restrictions. We begin with a number of examples
demonstrating the complexity of this problem.

I Example 3.2. Consider a class table

J< + x> <::
C <:: JC

and a formula

φ
def= C <: x ∧ C <: y ∧ x ≮: y ∧ y ≮: x

Is φ satisfiable? Let us consider various possible candidates for the assignment v. Let
v(x) = C and v(y) = C. In this case, the atom x ≮: y is falsified:

v(x) ≮: v(y) = C ≮: C ⇔ ⊥

Let v(x) = C and v(y) = Jy′ for some y′. Then

I(φ) = C <: C ∧ C <: Jy′ ∧ C ≮: Jy′ ∧ Jy′ ≮: C ⇔ ⊥

The case v(x) = Jx′ and v(y) = C is symmetrical. The last case is I(x) = Jx′ and I(y) = Jy′:

v(φ) = C <: Jx′ ∧ C <: Jy′ ∧ Jx′ ≮: Jy′ ∧ Jy′ ≮: Jx′ ⇔
JC <: Jx′ ∧ JC <: Jy′ ∧ Jx′ ≮: Jy′ ∧ Jy′ ≮: Jx′ ⇔
C <: x′ ∧ C <: y′ ∧ x′ ≮: y′ ∧ y′ ≮: x′

Note that v(φ) is exactly φ up to a renaming of variables. It means that every candidate
variable substitution either falsifies the formula, or results in a formula to which the same
reasoning applies. As an infinite chain of J is not a valid type, φ is unsatisfiable.

The unsatisfiability of φ can be intuitively explained in the following way. The satisfiability
of φ would mean that C has two incomparable supertypes. A set of supertypes of C is exactly
{JnC | n ≥ 0}. But for all n,m, JnC and JmC are comparable: n ≤ m iff JnC <: JmC.

ECOOP 2019

7:8 On Satisfiability of Nominal Subtyping with Variance

I Example 3.3. Consider another class table

E <::
J< + x> <::
A1 <:: Jn1A1, J

n1E

...
Am <:: JnmAm, J

nmE,

where m, ni ≥ 1, and the formula

φ
def=

∧
1≤i≤m

Ai <: x

This formula is satisfied only by v such that

v(x) = Jk·lcm(n1,...,nm)E,

where k ≥ 1 and lcm(n1, . . . , nm) is a least common multiple of n1, . . . , nm.

I Example 3.4. If we replace the class table entry for E in Example 3.3 with

E <:: Jn1·...·nmE

then the formula

φ′
def= φ ∧ E ≮: x

has a model if and only if the numbers n1, . . . , nm are not coprime.

I Example 3.5. Fix a class table CT and a finite partially ordered set (P,≤P). Consider
the formula

φ
def=

∧
x,y∈P,
x≤P y

x <: y ∧
∧

x,y∈P,
x�P y

x ≮: y

φ has a model if and only if there exists an order-embedding map from P to the set of ground
types defined by CT (partially ordered by ground subtyping relation).

I Proposition 3.6. SUBTYPE-SAT is semidecidable.

Proof. There is an algorithm that, given φ, enumerates all possible ground substitutions
v of variables of φ and checks v �CT

<: φ. Proposition 2.9 guarantees that if φ is satisfiable
modulo T CT

<: , then this algorithm eventually terminates. J

In the following section, we show that the set of ground substitution v such that v 2CT
<: φ

is not recursively enumerable.

A. Misonizhnik and D. Mordvinov 7:9

4 SUBTYPE-SAT is undecidable

A1< + x> <::
...

Am< + x> <::
R< + x> <::
S< + x> <::
R0 <:: RR0, E

S0 <:: SS0, E

E <::
U1< + x> <:: AU1x, W1x, Sx, Rx

...
Un< + x> <:: AUn

x, Wnx, Sx, Rx

V1< + y> <:: AV1y, W1y, Sy, Ry

...
Vn< + y> <:: AVn

y, Wny, Sy, Ry

W1< + x> <::
...

Wn< + x> <::
G <:: U1G, . . . , UnG, E

H <:: V1H, . . . , VnH, E

P <:: U1P, . . . , UnP, E

Q <:: V1Q, . . . , VnQ, E

W <:: W1W, . . . ,WnW, E

D <:: AU1D, . . . , AUn
D, E

Listing 2 Class table PCP-CT.

Ui#1

A1#1 · · · Am#1 Wi#1 R#1 S#1

Vi#1

Figure 2 Type parameter dependency graph for PCP-CT.

We prove the undecidability of SUBTYPE-SAT via a reduction from the Post Correspondence
Problem.

The Post Correspondence Problem

Let {(AU1 , AV1), . . . , (AUn , AVn)} be a set of pairs of non-empty words over a finite alphabet
{A1, . . . , Am }. The Post Correspondence Problem (PCP) is to determine whether or not
there exists a sequence of indices i1, . . . , ir such that AUi1

. . . AUir
= AVi1

. . . AVir
.

It is a well-known fact that PCP is undecidable [13].
We use a class table from Listing 2 in our reduction. Note that it is non-expansive as its

type parameter dependency graph (see Figure 2) has no cycles, and it has no contravariant
constructors.

ECOOP 2019

7:10 On Satisfiability of Nominal Subtyping with Variance

Consider the SUBTYPE-SAT problem for a formula ψ with type parameters x, y, z, q, p, t
and class table PCP-CT, where ψ is defined as follows:

φ0
def= R0 <: p ∧ S0 <: q ∧W <: z

φ1
def= G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z ∧ φ0

φ2
def= H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z ∧ φ0

ψ
def= D <: t ∧ x <: t ∧ y <: t ∧ t ≮: E ∧ φ1 ∧ φ2

The main idea of this reduction is to represent the words in {A1, . . . , Am }+ as chains of
covariant constructors terminating with E. For example, words AUi

and AVj
are encoded

as AUi
E and AVj

E. The enumeration of PCP solutions is encoded into the PCP-CT and ψ.
We demonstrate a non-deterministic process, consistently refining the type variables of ψ by
replacing them with a type constructor applied to fresh variables, and then simplifying the
new formula.

I Definition 4.1. A ground substitution is a substitution with only ground types in its range.
An elementary substitution is a substitution whose range contains only constructed types with
type variables as their arguments. A substitution is complete for a formula f , if its domain
is exactly all type variables of f .

Substitutions may be composed. The composition of u = [x1 7→ a1; . . . ;xn 7→ an] and v =
[y1 7→ b1; . . . ; ym 7→ bm] is obtained by removing from the substitution [x1 7→ va1; . . . ;xn 7→
van; y1 7→ b1; . . . ; ym 7→ bm] those pairs yi 7→ bi for which yi ∈ {x1, . . . , xk}. For instance,

x 7→ Cx′ � x′ 7→ Dx′′ = x 7→ CDx′′

We also define a composition of substitution sets:

{ substleft
1 ; . . . ; substleft

n } � { substright
1 ; . . . ; substright

k } def=
⋃

1≤i≤n
1≤j≤k

{ substleft
i � substright

j }

Note that as ψ is a conjunction of atoms, its satisfiability implies the satisfiability of its
arbitrary subformula. Now let us consider complete substitutions that do not falsify the
subformula φ0.

I Lemma 4.2. For the formula

φ0
def= R0 <: p ∧ S0 <: q ∧W <: z,

a substitution does not falsify φ0 iff it can be represented as a composition of substitutions

p 7→ Rp, p 7→ E, p 7→ R0, q 7→ Sq, q 7→ E, q 7→ S0, z 7→Wiz, z 7→ E, z 7→W

with 1 ≤ i ≤ n.

Proof. The type constructor R0 only has nominal supertypes with head constructors R0, R

and E. Hence, after an application of a substitution different from { p 7→ Rp; p 7→ E; p 7→
R0 } to φ0, the Var and Super rules cannot be applied to simplify the formula, therefore
φ0 becomes false. The application of both p 7→ E and p 7→ R0 satisfy an atom R0 <: p; an
application of p 7→ Rp turns this atom into itself. Therefore, only the compositions of these
substitutions do not falsify the formula.

A similar argument works for the q and z type variables. J

A. Misonizhnik and D. Mordvinov 7:11

I Lemma 4.3. For the formula

φ1
def= G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z ∧ φ0,

only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix]

[p 7→ E; q 7→ E; z 7→ E; x 7→ E]

with 1 ≤ i ≤ n do not falsify it.

Proof. The proof is by a case splitting into possible substitutions.
As φ0 is a subformula of φ1, Lemma 4.2 implies that the candidate substitutions to z

that do not falsify φ1 immediately are the ones from the set { z 7→Wiz; z 7→ E; z 7→W }.

[z 7→W]φ1 = G <: x ∧ x <: W ∧ . . .

By transitivity of subtyping, this entails the G <: W , which is false. Therefore, the
substitutions with z 7→W falsify φ1.

[z 7→Wiz]φ1 = G <: x ∧ P <: x ∧ x <: Wiz ∧ . . .

In order for this formula to be satisfiable, the substitution should map x to a common
supertype for G and P , and it should have a nominal supertype constructed with Wi.
The only such substitutions are {x 7→ Uix; x 7→Wix }.

[x 7→Wix]φ1 = R0 <: p ∧Wix <: p ∧ . . .

This formula has the atom Wix <: p, which is not falsified only if the substitution
p 7→ Wip is applied to the type variable p. But by Lemma 4.2, the candidate
substitutions into p are { p 7→ Rp; p 7→ E; p 7→ R0 }. Therefore, each substitution
containing [x 7→Wix; z 7→Wiz] falsifies φ1.

[x 7→ Uix]φ1 = R0 <: p ∧ Uix <: p ∧ S0 <: q ∧ Uix <: q ∧ Uix <: Wiz ∧ . . .

Common supertypes of R0 and Ui could have only one head constructor, namely
R; symmetrically, the common supertypes S0 and Ui could be constructed only by
S. Therefore, the substitutions p 7→ Rp and q 7→ Sq do not falsify the φ1, while
substitutions from the set

[z 7→Wiz; x 7→ Uix]� { p 7→ E; p 7→ R0 } � { q 7→ E; q 7→ S0 }

falsify φ1. Hence, in this case, only the substitution

[z 7→Wiz; x 7→ Uix; p 7→ Rp; q 7→ Sq]

does not falsify φ1.

[z 7→ E]φ1 = G <: x ∧ P <: x ∧ x <: E ∧ . . .

In order for this formula to be satisfiable, the substitution should map x to a common
supertype for G and P , which is a subtype of E. The only appropriate substitution is
x 7→ E. The application of the substitution [z 7→ E; x 7→ E] to φ1 gives

G <: E ∧ P <: E ∧ E <: p ∧ E <: q ∧ E <: E ∧R0 <: p ∧ S0 <: q ∧W <: E,

ECOOP 2019

7:12 On Satisfiability of Nominal Subtyping with Variance

which simplifies into

E <: p ∧ E <: q ∧R0 <: p ∧ S0 <: q.

In order for this formula to be satisfiable, the substitution should map p to a common
supertype of R0 and E, and q should be mapped into a common supertype of S0 and E.
The only appropriate substitution is [p 7→ E; q 7→ E]. Therefore the substitution

[z 7→ E; x 7→ E; p 7→ E; q 7→ E]

does not falsify φ1.
We have considered all possible cases, among which only the substitutions

[z 7→Wiz; x 7→ Uix; p 7→ Rp; q 7→ Sq]

[z 7→ E; x 7→ E; p 7→ E; q 7→ E]

with 1 ≤ i ≤ n do not falsify φ1. J

I Lemma 4.4. For the formula

φ2
def= H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z ∧ φ0,

only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; y 7→ Viy]

[p 7→ E; q 7→ E; z 7→ E; y 7→ E]

with 1 ≤ i ≤ n do not falsify it.

Proof. Similar to the proof of Lemma 4.3. J

Lemma 4.3 and Lemma 4.4 imply that only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

[p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

do not falsify φ1 ∧ φ2.
φ1 ∧ φ2 has a very important property: the application of the substitution

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

to it and the simplification of the resulting formula turn φ1 ∧ φ2 into itself:

G <: Uix ∧ P <: Uix ∧ Uix <: Rp ∧ Uix <: Sq ∧ Uix <: Wiz∧
H <: Viy ∧Q <: Viy ∧ Viy <: Rp ∧ Viy <: Sq ∧ Viy <: Wiz∧
R0 <: Rp ∧ S0 <: Sq ∧W <: Wiz

⇔
UiG <: Uix ∧ UiP <: Uix ∧Rx <: Rp ∧ Sx <: Sq ∧Wix <: Wiz∧
ViH <: Viy ∧ ViQ <: Viy ∧Ry <: Rp ∧ Sy <: Sq ∧Wiy <: Wiz∧
RR0 <: Rp ∧ SS0 <: Sq ∧WiW <: Wiz

⇔
G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z∧
H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z∧
R0 <: p ∧ S0 <: q ∧W <: z
= φ1 ∧ φ2

A. Misonizhnik and D. Mordvinov 7:13

Note also that application of the substitution

[p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

and simplification turn φ1 ∧ φ2 into a true.

Notation

Let N = { 1, . . . , n }. We denote the set of finite sequences in N by N<ω. For J ∈ N<ω, J =
j1 . . . jr, we denote by UJT a chain of type constructors Uj1 . . . UjrT ; we define VJT and
WJT similarly. Sometimes we write Jr to emphasize that the length of J is r.

I Theorem 4.5. The formula φ1∧φ2 has a set of models with the interpretations IJ such that

vJ(x) = UJE, vJ(y) = VJE, vJ(z) = WJE,

vJ(p) = RrE, vJ(q) = SrE

where J ∈ N<ω, and r is the length of J .

Proof. As we have shown, only the compositions of the following substitutions do not falsify
the formula φ1 ∧ φ2 immediately:

substi
def= [p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

substend
def= [p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

Note that as free variable substitutions are ground substitutions, we may compose them.
As substi does not change φ1 ∧ φ2 after simplification, and substend satisfies it, a satisfying
substitution for φ1 ∧ φ2 may only be a composition of the finite number of substi, ending
with the ground substitution substend, i.e. substj1 � . . .� substjr

� substend.
Thus the only satisfying ground substitutions of φ1 ∧ φ2 are:

vJ = substj1 � . . .� substjr
� substend =

= [p 7→ RrE; q 7→ SrE; z 7→WJE; x 7→ UJE; y 7→ VJE] J

I Lemma 4.6. Let L be a chain of “letter” constructors, i.e. constructors from {A1, . . . , Am},
Jr ∈ N<ω with r > 0. Then

UJE <: LE ∨ UJE <: LD

is satisfiable if and only if

AUj1
. . . AUjr

E = LE

Proof. We prove the claim by induction on r.
Base step: r = 1.

Uj1E <: LE ∨ Uj1E <: LD ⇔ AUj1
E <: LE ∨AUj1

E <: LD

As AUj1
E, LE and LD are constructed from covariant type constructors A1, . . . , Am without

the right hand side of the class table (i.e. without the strict nominal supertypes), we may
conclude that

AUj1
E <: LE ∨AUj1

E <: LD ⇔ AUj1
E = LE ∨AUj1

E = LD ⇔ AUj1
E = LE

ECOOP 2019

7:14 On Satisfiability of Nominal Subtyping with Variance

Induction step

Let r = k + 1, J = j1 · J ′, length of J ′ is k.

Uj1UJ′E <: LE ∨ Uj1UJ′E <: LD ⇔
⇔ AUj1

UJ′E <: LE ∨AUj1
UJ′E <: LD ⇔

As AUj1
E, LE and LD are constructed from covariant type constructors A1, . . . , Am, which

do not have strict nominal supertypes, we must require L = AUj1
L′.

⇔ AUj1
UJ′E <: AUj1

L′E ∨AUj1
UJ′E <: AUj1

L′D ⇔
⇔ UJ′E <: L′E ∨ UJ′E <: L′D ⇔ (I.H.)

⇔ AUj2
. . . AUjr

E = L′E ⇔ AUj1
AUj2

. . . AUjr
E = LE J

I Lemma 4.7. Let L be a chain of constructors from {A1, . . . , Am}, Jr ∈ N<ω with r > 0.
Then

VJE <: LE ∨ VJE <: LD

is satisfiable if and only if

AVj1
. . . AVjr

E = LE

Proof. Similar to the proof of Lemma 4.6. J

I Lemma 4.8. The formula

φJr
def= D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E

is satisfiable if and only if r > 0 and

φ′J
def= AVj1

. . . AVjr
E = AUj1

. . . AUjr
E

is valid.

Proof. Let J be an empty sequence. Then φJ becomes

D <: t ∧ E <: t ∧ t ≮: E.

D and E have only one common supertype E. But the substitution of E into t falsifies
the formula because of the atom t ≮: E. Hence if J is an empty sequence, φJ is unsatisfiable.

Let J be a non-empty sequence.
(⇒)
Let φJ be satisfiable. Then D and UJE should have a common supertype. It cannot be

E, as for all i, E is not a supertype for Ui. Consider all other supertypes of D. Those are
chains of constructors from {A1, . . . , Am }, terminated by either D or E. In other words, the
only candidate supertypes are LD and LE, where L are non-empty chains of constructors
from {A1, . . . , Am }.

By Lemma 4.6 and Lemma 4.7, if vJ �CT
<: φJ , then

vJ(t) = AUj1
. . . AUjr

E = AVj1
. . . AVjr

E

As φJ is satisfiable, φ′J is true.

A. Misonizhnik and D. Mordvinov 7:15

(⇐)
Let φ′J be valid, then the interpretation

vJ(t) = AUj1
. . . AUjr

E = AVj1
. . . AVjr

E,

satisfies φJ :

vJ(φJ) = D <: vJ(t) ∧ UJE <: vJ(t) ∧ VJE <: vJ(t) ∧ vJ(t) ≮: E =

D <: AUj1
. . . AUjr

E ∧ UJE <: AUj1
. . . AUjr

E∧

VJE <: AVj1
. . . AVjr

E ∧AUj1
. . . AUjr

E ≮: E ⇔

AUj1
. . . AUjr

E <: AUj1
. . . AUjr

E∧

AVj1
. . . AVjr

E <: AVj1
. . . AVjr

E∧

AUj1
. . . AUjr

E ≮: E ⇔ > J

I Theorem 4.9. The formula

φJ
def= D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E

is satisfiable if and only if J is a solution to PCP with the pairs of words

{(AU1 , AV1), . . . , (AUn , AVn)}

over the alphabet {A1, . . . , Am }, i.e.

AUj1
. . . AUjr

= AVj1
. . . AVjr

Proof. By Lemma 4.8, φJ is satisfiable if and only if r > 0 and

φ′J
def= AVj1

. . . AVjr
E = AUj1

. . . AUjr
E

is valid.
(⇒)
Let φ′J be valid. Then J is such a non-empty sequence of indices that the concatenation

of words AUj1
, . . . , AUjr

equals the concatenation of words AVj1
, . . . , AVjr

. Therefore J is
a solution to PCP. (⇐)

Let J be a solution to PCP. That means that the types AVj1
. . . AVjr

E and AUj1
. . . AUjr

E

are equal. Besides, as J solves PCP, it is non-empty. This implies the validity of φ′J . J

I Theorem 4.10. The formula

ψ
def= D <: t ∧ x <: t ∧ y <: t ∧ t ≮: E ∧ φ1 ∧ φ2

is satisfiable if and only if PCP with the pairs of words

{(AU1 , AV1), . . . , (AUn , AVn)}

over the alphabet {A1, . . . , Am } has a solution.

Proof. By Theorem 4.5, the formula φ1 ∧ φ2 has a set of solutions with the interpretations
vJ(I) such that:

vJ(x) = UJE, vJ(y) = VJE, vJ(z) = WJE,

vJ(p) = RrE, vJ(q) = SrE

ECOOP 2019

7:16 On Satisfiability of Nominal Subtyping with Variance

Hence the satisfiability of ψ is equivalent to the satisfiability of

ψ′
def=

∨
J∈N<ω

vJ(ψ) =
∨

J∈N<ω

D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E =
∨

J∈N<ω

φJ

By Theorem 4.5, φJ is satisfiable if and only if J is a solution to PCP. Therefore ψ′ is
satisfiable if and only if there exists a sequence of indices J that solves PCP. J

I Corollary 4.11. SUBTYPE-SAT is undecidable.

I Corollary 4.12. SUBTYPE-SAT is undecidable even for non-expansive class tables without
contravariant constructors.

I Corollary 4.13. SUBTYPE-SAT is undecidable even for non-expansive class tables with only
constant and unary constructors.

I Corollary 4.14. SUBTYPE-SAT is undecidable even for quantifier-free conjunctions of literals.

I Corollary 4.15. SUBTYPE-SAT is undecidable even for quantifier-free conjunctions of positive
literals.

Proof. To show this, we simply need to exclude the trivial solution with all variables mapped
to E without using the atom t ≮: E in ψ.

This can be done, for instance, by adding a new entry

D0 <:: AU1D, . . . , AUnD

into PCP-CT and altering ψ to

ψ
def= D0 <: t ∧ x <: t ∧ y <: t ∧ φ1 ∧ φ2 J

5 Decidable fragments of SUBTYPE-SAT

In this section, we introduce several fragments of the SUBTYPE-SAT and prove their decidability.
Decidability could be achieved by restricting the class table or the formula. A semiground
fragment constrains the formula, allowing the class table to be arbitrary (but non-expansive).
Using the intuitions from the proof, we conjecture another decidable fragment that constraints
the shape of the class table, leaving the formula to be arbitrary.

I Definition 5.1. A semiground atom (literal) is an atom (literal) with at least one ground
argument. A normalized semiground atom (literal) is an atom (literal) with one ground
argument and one variable argument (note that the SUBTYPE-SAT language only has binary
predicate symbols <: and =).

A (normalized) semiground formula is a quantifier-free formula that contains only (nor-
malized) semiground atoms. A semiground fragment is a set of semiground formulas.

I Theorem 5.2. Each semiground atom is logically equivalent to some normalized semiground
formula.

Proof. The theorem obviously holds in case an atom is already normalized. If both arguments
of an atom are ground, it is equivalent to either > or ⊥. It remains to consider only the
atom T <: U with both T and U constructed. In this case we apply the subtyping rules:

A. Misonizhnik and D. Mordvinov 7:17

Let T = C<T> and U = C<U>. Then we simplify T <: U using (Var) rule:

C<T> <: C<U>⇔
∧

i

Ti <:var(C#i) Ui

As either C<T> or C<U> is ground, either every Ti, or every Ui is ground. This means
that every atom of the resulting formula is still semiground.
Let T = C<T> and U = D<U> with C 6= D. Then we apply the (Super) rule:

C<T> <: D<U>⇔
∨
j

D<Wj> <: D<U>,

where D<Wj> = [x 7→ T]Vj and C<x> <:: Vj . Obviously, all atoms in this formula are
still semiground.

As the non-deterministic application of subtyping rules with occurence checks is a decision
procedure for non-expansive inheritance [8], the process is either terminating, resulting in a
normalized formula, or eventually the chain of simplifications loops on some atom. In this
case, the atom is tautologically false. J

I Corollary 5.3. Each semiground formula is logically equivalent to some normalized semig-
round formula.

I Definition 5.4. Let Q def= A1 ∧ . . . ∧An be a conjunct. Maximal connected subconjuncts is
a set of conjuncts {Q1, . . . , Qm} such that
1. Q = Q1 ∧ . . . ∧Qm

2. Qi and Qj have distinct literals if i 6= j

3. If Ai and Aj have common variables then they occur in the same Qk

I Lemma 5.5. If SUBTYPE-SAT is decidable for the conjunction of normalized semiground
literals (with the only free variable x) of the form∧

i

Ti <: x ∧
∧
j

x <: Uj ∧
∧
k

Vk ≮: x ∧
∧

l

x ≮: Wl,

then SUBTYPE-SAT is decidable for the whole semiground fragment.

Proof. Let ψ be a semiground formula. By Corollary 5.3

ψ ∼CT
<:

∨
i

∧
j

ψi,j ,

where ψi,j is a normalized semiground literal. Each conjunct can be divided into maximal
connected subconjuncts in such a way that each one of them contains only one variable. The
algorithm then can check the satisfiability of each group separately. J

We define a set of substitutions

CtorSubsts = {x 7→ C<x> },

where C is a constructor from CT , and x is a vector of distinct variables.

I Lemma 5.6. Let ψ be a conjunction of normalized semiground literals with only one free
variable. Then ψ(x) is equisatisfiable with

ψsubst def=
∨

subst∈CtorSubsts

subst ψ(x)

ECOOP 2019

7:18 On Satisfiability of Nominal Subtyping with Variance

I Lemma 5.7. The SUBTYPE-SAT problem is decidable for conjunctions of normalized semig-
round literals with one free variable.

Proof. Let ψ0 be a conjunction of normalized semiground literals with one free variable.
Apply Lemma 5.6. ψsubst

0 is a semiground formula. If it is ground, we may check its
satisfiablity and terminate. Otherwise, we may act as in Lemma 5.5: apply Corollary 5.3
and convert the formula to DNF. ψsubst

0 is satisfiable iff one of the conjuncts is satisfiable.
Choose the conjunct non-deterministically and divide it into maximal connected subcon-

juncts. The algorithm then checks the satisfiability of each subconjunct φ1, i.e. we have
reduced the problem to itself. The described procedure enumerates the (possibly infinite)
sequence {ψi }i∈N.

Without loss of generality, we may conclude that all literals in ψi are distinct and that
all conjuncts have an identical free variable. Two conjuncts are equal if they are identical
as sets of literals. Note that if ψi = ψj for some i 6= j, then ψi is unsatisfiable, and we
may terminate.

For the conclusion of the proof, we refer to the notion of inheritance closure from [8]. It is
known that the inheritance closure of a finite set of types within a non-expansive class table
is finite [8]. Now, note that all ground types of ψi are obtained by application of subtyping
rules, thus they are elements of the inheritance closure for the set of ground types of ψ0.
That means that only a finite number of literals may occur in {ψi }i∈N. As every literal
occurs in each conjunct no more than once, eventually ψi = ψj for i < j. Therefore, our
procedure terminates. J

I Theorem 5.8. SUBTYPE-SAT is decidable for queries with a semiground fragment.

Proof. By Lemma 5.5 and Lemma 5.7. J

Formulas from Example 3.3 and Example 3.4 refer to the described fragment and their
satisfiability can be checked. And the formula from Theorem 4.10 goes beyond the fragment,
which is consistent with the undecidability of PCP.

The proof of Theorem 5.2 can be used to produce a generalized scheme for obtaining new
decidable fragments. We describe this scheme below.

I Definition 5.9. A normalized atom (literal) is an atom (literal) that does not have open
constructed types. In other words, a normalized atom is either a normalized semiground atom,
or x <: y, or x = y, where x and y are variables. A normalized formula is a quantifier-free
formula that only contains normalized atoms.

Consider a conjunct whose maximal connected subconjuncts consist of a single element.
Acting similarly to Lemma 5.6, we simplify the obtained formula, convert it to DNF, and
split it into maximal connected subconjuncts. If we can impose some restrictions on the class
table or the formula so that the number of different obtained subconjuncts is finite, then we
have a criterion for the termination of the procedure.

I Example 5.10. Let the class table be organized in such a way that for each pair of
constructors C and D, the literals C<x> <: D<y> and C<x> ≮: D<y> are transformed via
the application of Corollary 5.3 into such a disjunction of normalized conjuncts that each of
them may be partitioned into maximal connected subconjuncts, containing no more than
one variable from x and no more than one variable from y. Applying the scheme described
above to normalized conjuncts with n different free variables, we can only obtain normalized

A. Misonizhnik and D. Mordvinov 7:19

conjuncts which have no more than n free variables. Moreover, each quantifier-free formula
can be simplified into a normalized formula. As the number of distinct types in an inheritance
closure is bounded [8], the number of conjuncts is bounded, so the procedure will terminate.

This idea may be used to introduce some syntactic restrictions on the shape of the class
table. We leave it for the future work.

6 Related work

There is a long line of research on decidability of ground subtyping of nominal type systems
with variance. One of the latest studies has shown the Turing-completeness of Java sub-
typing [7]. C++ templates are also known to be Turing-complete [18]. Scala [12], OCaml
[10, 15] and Haskell type systems with extensions are undecidable as well. However, .NET
subtyping is decidable [5, 8]. These papers formalize and investigate type checking in certain
programming languages. In contrast, we investigate the subtyping in the presence of open
types, founded on the results on ground subtyping.

Constraint satisfiability

The most relevant recent work is [16]. Motivated by the same goals, it reduces the satisfiability
problem of type-based partially ordered sets to the first-order satisfiability problem and
proposes to use SMT-solvers to solve the constraints. Unlike our work, the type system
under consideration is a nominal fragment of Java type system without generics.

The satisfiability problem for subtyping constraints and its computational complexity for
more general (in comparison to [16]) fragments of type systems is explored in [14, 6, 9, 11].
These works explore constraints on finite and recursive types, structural and non-structural
subtyping and type constructors with covariant and contravariant type parameters; our work
studies a more general problem.

The paper [17] shows the undecidability of first-order subtyping constraints for non-
structural subtyping. This result entails the undecidability of SUBTYPE-SAT, but it uses a
significantly larger fragment of first-order logic (in particular, universally quantified formulas).
Our proof uses only quantifier-free conjunctions of positive atoms and those features of
nominal subtyping with variance which are not present in the non-structural case.

7 Conclusion

We have introduced the satisfiability problem of nominal subtyping with variance and
studied some of its properties. The undecidability of the problem has been proven using a
noticeably small fragment of the type system. We have also discussed a number of non-trivial
decidable fragments and a scheme to obtain other decidable fragments. Finding more extensive
decidable fragments is an open problem: for example, it could be done by introducing syntactic
restrictions on the shape of the class table. In addition, it would be interesting to compare
the decidable fragments with the fragment that is most widely used in practice. Another
area of future work is the construction of effective procedures for solving the SUBTYPE-SAT
problem. Subsequently, such decision procedures can be implemented in SMT-solvers, which
makes them easy to use in a variety of SMT-based program analysis approaches.

ECOOP 2019

7:20 On Satisfiability of Nominal Subtyping with Variance

References
1 Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# programming system:

An overview. In International Workshop on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 49–69. Springer, 2004.

2 Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018.

3 Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Commun. ACM, 54(9):69–77, 2011.

4 ECMA ECMA. 335: Common language infrastructure (CLI), 2005.
5 Burak Emir, Andrew Kennedy, Claudio V. Russo, and Dachuan Yu. Variance and Generalized

Constraints for C# Generics. In ECOOP, volume 4067 of Lecture Notes in Computer Science,
pages 279–303. Springer, 2006.

6 Alexandre Frey. Satisfying Subtype Inequalities in Polynomial Space. In SAS, volume 1302 of
Lecture Notes in Computer Science, pages 265–277. Springer, 1997.

7 Radu Grigore. Java generics are Turing complete. In POPL, pages 73–85. ACM, 2017.
8 Andrew J Kennedy and Benjamin C Pierce. On decidability of nominal subtyping with

variance, 2007.
9 Viktor Kuncak and Martin C. Rinard. Structural Subtyping of Non-Recursive Types is

Decidable. In LICS, pages 96–107. IEEE Computer Society, 2003.
10 Mark Lillibridge. Translucent sums: A foundation for higher-order module systems. PhD

thesis, Carnegie Mellon University, 1997.
11 Joachim Niehren, Tim Priesnitz, and Zhendong Su. Complexity of Subtype Satisfiability over

Posets. In ESOP, volume 3444 of Lecture Notes in Computer Science, pages 357–373. Springer,
2005.

12 Martin Odersky. Scaling DOT to Scala–soundness, 2016.
13 Emil L Post. A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society, 52(4):264–268, 1946.
14 Vaughan R. Pratt and Jerzy Tiuryn. Satisfiability of Inequalities in a Poset. Fundam. Inform.,

28(1-2):165–182, 1996.
15 Andreas Rossberg. Undecidability of OCaml type checking, 1999.
16 Elena Sherman, Brady J. Garvin, and Matthew B. Dwyer. Deciding Type-Based Partial-Order

Constraints for Path-Sensitive Analysis. ACM Trans. Softw. Eng. Methodol., 24(3):15:1–15:33,
2015.

17 Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen. The
first-order theory of subtyping constraints. In POPL, pages 203–216. ACM, 2002.

18 Todd L. Veldhuizen. C++ Templates are Turing complete, 2003.
19 Mirko Viroli. On the recursive generation of parametric types. Technical report, Technical

Report DEIS-LIA-00-002, Universita di Bologna, 2000.

	Introduction
	The type system
	The SUBTYPE-SAT problem
	SUBTYPE-SAT is undecidable
	Decidable fragments of SUBTYPE-SAT
	Related work
	Conclusion

